aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--src/projet.cpp86
1 files changed, 43 insertions, 43 deletions
diff --git a/src/projet.cpp b/src/projet.cpp
index 16aca2b..46952e2 100644
--- a/src/projet.cpp
+++ b/src/projet.cpp
@@ -13,18 +13,19 @@
using namespace std;
struct first:public std::unary_function<std::vector<double>, double>
-{
+{
double operator()(std::vector<double> X){
return X[0];
- }
+ }
};
vector< vector<double> > exemple1_stratified() {
+ int I = 10; //le nombre de strates
vector<double> q = quantile_norm(10, 1);
- vector<double> p(10, 0.1);
+ vector<double> p(I, 1/(double)I);
vector<gaussian_truncated> rvar;
rvar.push_back(gaussian_truncated(GSL_NEGINF, q[0]));
- for (int i=1; i<10; i++){
+ for (int i=1; i<I; i++){
rvar.push_back(gaussian_truncated(q[i-1], q[i]));
};
vector<int> N = {300, 1000, 10000, 20000}; //notre tableau du nombre successif de tirages, qui correspondent aux 300, 1300, 11300 et 31300
@@ -33,7 +34,7 @@ vector< vector<double> > exemple1_stratified() {
stratified_sampling<gaussian_truncated> S(p,rvar);
cout<<"N"<<"\t"<<"moyenne"<<"\t\t"<<"sigma"<<"\t"<<"théorique"<<endl;
vector<double> r(4,0);
- for (int i=0; i<4; i++){
+ for (size_t i=0; i<N.size(); i++){
S.draw(N[i]);
r[0]= r[0] + N[i];
r[1] = S.estimator().first;
@@ -50,8 +51,8 @@ vector< vector<double> > exemple1_rqmc(){
vector<int> N = {3, 13, 113, 313}; //les N choisis pour que les NI soient égaux aux N de l'exemple 1 stratified_sampling
first f; //comme quasi_gaussian retourne un vecteur, on doit composer avec f pour avoir le double QG()[0]
vector< vector<double> > data (4);
- for(int i =0; i<4; i++){
- data[i] = monte_carlo (I,quasi_mean<struct first, sobol> (N[i], 1, f));
+ for(size_t i =0; i<N.size(); i++){
+ data[i] = monte_carlo (I, quasi_mean<struct first, sobol> (N[i], 1, f));
}
cout<<"moyenne"<<"\t\t"<<"sigma"<<"\t\t"<<"taille IC"<<endl;
for(int i =0; i<3; i++){
@@ -61,46 +62,45 @@ vector< vector<double> > exemple1_rqmc(){
};
-std::vector<double> normalize (std::vector<double> mu) {
+std::vector<double> normalize (std::vector<double> mu) {
int d = mu.size();
- double norm_mu = 0;
- std::vector<double> u(d);
- for(int i=0; i<d; i++) {
- norm_mu += mu[i]*mu[i];
- }
+ double norm_mu = 0;
+ std::vector<double> u(d);
+ for(int i=0; i<d; i++) {
+ norm_mu += mu[i]*mu[i];
+ }
for(int i=0; i<d; i++) {
u[i] = mu[i]/sqrt(norm_mu);
- }
+ }
return u;
}
-
-
- vector <vector<double> > exemple2_stratified (int d){
- std::vector<double> mu(d);
- vector<double> K = {45, 50, 55};
- vector<int> N = {100000, 400000, 500000};
- vector< vector<double> > data(3);
- vector<double> q = quantile_norm(100, 1);
- vector<double> p(100, 0.01);
- double r = 0.05;
- double T = 1.0;
- double S0 = 50;
- double V = 0.1;
- typedef compose_t<exponential_tilt<asian_option>, multi_gaussian_truncated> tilted_option;
- for (int i=0; i<3; i++){
- mu = argmax(r, T, S0, V, K[i], d);
- std::vector<double> u(d);
- u = normalize(mu);
+
+
+vector <vector<double> > exemple2_stratified (int d){
+ vector<double> K = {45, 50, 55};
+ vector<int> N = {100000, 400000, 500000};
+ int I = 100; //le nombre de strates
+ vector< vector<double> > data(3);
+ vector<double> q = quantile_norm(I, 1);
+ vector<double> p(I, 1/(double)I);
+ double r = 0.05;
+ double T = 1.0;
+ double S0 = 50;
+ double V = 0.1;
+ typedef compose_t<exponential_tilt<asian_option>, multi_gaussian_truncated> tilted_option;
+ for (size_t i=0; i < K.size(); i++){
+ vector<double> mu = argmax(r, T, S0, V, K[i], d);
+ std::vector<double> u = normalize(mu);
asian_option A(r, T, S0, V, K[i], true);
exponential_tilt<asian_option> G(mu, A);
std::vector<tilted_option> X;
- X.push_back(compose(G, multi_gaussian_truncated(GSL_NEGINF,q[0], u)));
- for(int j=1; j<100; j++) {
- X.push_back(compose(G, multi_gaussian_truncated(q[j-1],q[j], u)));
+ X.push_back(compose(G, multi_gaussian_truncated(GSL_NEGINF, q[0], u)));
+ for(int j=1; j < I; j++) {
+ X.push_back(compose(G, multi_gaussian_truncated(q[j-1], q[j], u)));
}
stratified_sampling<tilted_option> S(p, X);
vector<double> r(3, 0);
- for (int j=0; j<3; j++){
+ for (size_t j=0; j < N.size(); j++){
S.draw(N[j]);
}
r[0] = K[i];
@@ -120,9 +120,11 @@ vector< vector<double> > exemple2_rqmc(int d) {
double V = 0.1;
vector< vector<double> > data(3);
vector<double> K = {45, 50, 55};
- for(int i =0; i<3; i++){
+ int I=100;//la taille du vrai Monte-Carlo
+ for(int i =0; i<3; i++) {
asian_option A(r, T, S0, V, K[i], true);
- data[i] = monte_carlo(100, quasi_mean<asian_option, sobol> (N, d, A));}
+ data[i] = monte_carlo(I, quasi_mean<asian_option, sobol> (N, d, A));
+ }
for(int i =0; i<3; i++){
std::cout<<data[i][0]<<std::endl;
}
@@ -146,18 +148,16 @@ int make_table1(vector< vector<double> > data1, vector< vector<double> > data2)
int main()
-{
+{
init_alea(2);
//~ cout<<gsl_cdf_gaussian_Pinv(0.975,1)<<endl;
//~ cout<<"Stratified_sampling sur l'exemple 1 de la normale"<<endl;
- //~ vector< vector<double> > data1 = exemple1_stratified();
+ //~ vector< vector<double> > data1 = exemple1_stratified();
//~ cout<<"Randomised quasi Monte-Carlo sur l'exemple 1 de la normale"<<endl;
//~ vector< vector<double> > data2 = exemple1_rqmc();
//~ make_table1(data1, data2);
exemple2_rqmc(16);
exemple2_stratified(16);
return 0;
-
-}
-
+}