diff options
Diffstat (limited to 'src/rqmc.hpp')
| -rw-r--r-- | src/rqmc.hpp | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/src/rqmc.hpp b/src/rqmc.hpp new file mode 100644 index 0000000..1b33713 --- /dev/null +++ b/src/rqmc.hpp @@ -0,0 +1,127 @@ +#include "low_discrepancy.hpp" +#include <vector> +#include <gsl/gsl_cdf.h> +#include "var_alea.hpp" + + +double frac_part(double x); + +//fonctions de compositions de monte_carlo.hpp + +template <class _Result> +struct generator +{ + typedef _Result result_type; +}; + +template <typename Fct, typename VA> +struct compose_t : public generator< typename Fct::result_type > +{ + compose_t(Fct f, VA X) : f(f), X(X) {}; + typename Fct::result_type operator()() { + return f(X()); + }; + private: + Fct f; VA X; +}; + +template <typename Fct, typename VA> +inline compose_t<Fct, VA> +compose(Fct f, VA X) { + return compose_t<Fct, VA>(f, X); +}; + +template <typename VA> +struct mean_t: public generator<double> +{ + mean_t(int n, VA X): n(n), X(X) {}; + double operator()(){ + double sum = 0; + for(int i=0; i<n; i++){ + sum+=X(); + } + return sum/n; + } + private : + int n; VA X; + }; + +template <typename VA> +inline mean_t<VA> +mean(int n, VA X){ + return mean_t<VA>(n, X); +}; + + +//Les classes de monte-Carlo + +template <typename L> +std::vector<double> monte_carlo(int n, L X) +{ + std::vector<double> result(3,0); + double x; + for (int j = 0; j < n; j++) { + x = X(); + result[0] += x; + result[1] += x*x; + } + result[0] /= (double) n; + result[1] = (result[1] - n*result[0]*result[0])/(double)(n-1); + result[2] = 1.96*sqrt(result[1]/(double) n); + return result; +}; + +template <typename L, typename Fct> +std::vector<double> monte_carlo(int n, Fct f, L X) +{ + return monte_carlo(n, compose(f, X)); +}; + +//Les classes de quasi-mean + +template <typename LDS> +struct quasi_gaussian : public var_alea<std::vector<double> > +{ + quasi_gaussian (int d, double mean = 0, double std =1) + : d(d), mean(mean), std(std), s(d), U(0,1), seed(d) { + for(int i=0; i<d; i++) {seed[i]=U();} + }; + std::vector<double> operator ()(){ + std::vector<double> result = s(); + for(int i=0;i<d; i++){ + result[i] = mean + gsl_cdf_gaussian_Pinv(frac_part(result[i]+seed[i]), std); + } + return value = result; + } + private: + int d; + double mean, std; + LDS s; + uniform U; + std::vector<double> seed; +}; + + + +struct gaussian_d : public var_alea<std::vector<double> > +{ + gaussian_d(int d, double mean = 0, double std =1) + : d(d), mean(mean), std(std), G(mean, std) {}; + std::vector<double> operator ()(){ + std::vector<double> result(d); + for(int i=0;i<d; i++){ + result[i] = G(); + } + return value = result; + } + private: + int d; + double mean, std; + gaussian G; +}; + + + + + + |
