From a86b1d918a4c31f74024aa6b42fa0021919585de Mon Sep 17 00:00:00 2001 From: Bertrand Date: Mon, 8 Feb 2016 14:40:20 +0000 Subject: débuggage et seeding MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- main.cpp | 28 +++++++---- stratified_sampling.cpp | 38 --------------- stratified_sampling.hpp | 126 ++++++++++++++++++++++++++++++++++++++---------- 3 files changed, 119 insertions(+), 73 deletions(-) diff --git a/main.cpp b/main.cpp index 88617c4..8692967 100644 --- a/main.cpp +++ b/main.cpp @@ -1,16 +1,16 @@ #include #include #include -//#include "rtnorm.hpp" #include #include #include "stratified_sampling.hpp" #include #include +using namespace std; //--génération quantiles-- -std::vector quantile_norm(int n, double sigma){ - std::vector q(n); +vector quantile_norm(int n, double sigma){ + vector q(n); for (int i=0; i q; - q = quantile_norm(10, 1); + vector q = quantile_norm(10, 1); vector p(10, 0.1); - vector gen; - gen.push_back(gaussian_truncated(GSL_NEGINF,q[0])); + vector rvar; + rvar.push_back(gaussian_truncated(GSL_NEGINF, q[0],0,1,0)); for (int i=1; i<10; i++){ - gen.push_back(gaussian_truncated(q[i-1],q[i])); + rvar.push_back(gaussian_truncated(q[i-1], q[i],0,1,i)); + } + stratified_sampling S(p,rvar); + S.update(100); + S.draw(); + for(int i=0;i<10;i++){ + cout< S(p, gen); - //S.update(1000); return 0; } diff --git a/stratified_sampling.cpp b/stratified_sampling.cpp index b959776..c1c8dc1 100644 --- a/stratified_sampling.cpp +++ b/stratified_sampling.cpp @@ -1,6 +1,4 @@ #include "stratified_sampling.hpp" -#include -#include std::pair mean_var( std::vector r){ std::pair p; @@ -13,39 +11,3 @@ std::pair mean_var( std::vector r){ p.second -= p.first * p.first; return p; } - -//actualisation du nombre de tirages à faire par strates -template -void stratified_sampling::update(int Nk) { - int I = p.size(); - //reinitialistation du vecteur M du nombre de tirages par strates - if (M.empty()) { - M.resize(I,1); - } - else { - for(int i=0; i m(I, 0); //le vecteur des m_i idéals - - if (sigma.empty()) { - for (int i=0; i +#include +#include #include #include "rtnorm.hpp" @@ -9,43 +11,117 @@ struct var_alea { typedef T result_type; var_alea() : value(0) {}; var_alea(T value) : value(value) {}; - virtual ~var_alea() {}; + virtual ~var_alea() {}; virtual T operator()() = 0; T current() const { return value; }; - protected: - T value; +protected: + T value; }; typedef var_alea var_alea_real; struct gaussian_truncated : public var_alea_real { - gaussian_truncated(double a, double b, double mean=0, double sigma=1) - :a(a), b(b), mean(mean), sigma(sigma) { - const gsl_rng_type* type = gsl_rng_default; - gen = gsl_rng_alloc(type); - }; - double operator()() { - pair p = rtnorm(gen, a, b, mean, sigma); - return value = p.first; - }; - ~gaussian_truncated() { gsl_rng_free(gen); } + gaussian_truncated(double a, double b, double mean=0, double sigma=1, int seed=0) + :a(a), b(b), mean(mean), sigma(sigma), seed(seed) { + const gsl_rng_type* type = gsl_rng_default; + gen = gsl_rng_alloc(type); + gsl_rng_set(gen, seed); + }; + gaussian_truncated(gaussian_truncated const &other) + :a(other.a),b(other.b), mean(other.mean),sigma(other.sigma){ + gen = gsl_rng_clone(other.gen); + }; + + double operator()() { + pair p = rtnorm(gen, a, b, mean, sigma); + return value = p.first; + }; + + ~gaussian_truncated() { gsl_rng_free(gen); } private: - double mean, sigma, a, b; - gsl_rng *gen; + int seed; + double mean, sigma, a, b; + gsl_rng *gen; }; template struct stratified_sampling { - stratified_sampling(vector p, vector gen) - :p(p), gen(gen) {}; - void update(int N); - //vector get_mean(); - //double estimator(); + stratified_sampling(vector p, vector gen) + :p(p), gen(gen), mean(p.size(), 0), sigma(p.size(), 0){}; + void update(int N); + void draw(); + vector get_mean(); + //double estimator(); private: - vector p; - vector M; - vector sigma; - vector gen; - + vector p; + vector M; + vector cumM; + vector mean; + vector sigma; + vector gen; + +}; + +//actualisation du nombre de tirages à faire par strates +template +void stratified_sampling::update(int Nk) { + int I = p.size(); + bool first_step = M.empty(); + //reinitialistation du vecteur M du nombre de tirages par strates + if (first_step) { + M.resize(I,1); + cumM.resize(I,0); + } + else { + for(int i=0; i m(I, 0); //le vecteur des m_i idéals + + if (first_step) { + for (int i=0; i +void stratified_sampling::draw() { + int I = p.size(); + double m, s, oldmean; + for(int i=0;i +vector stratified_sampling::get_mean() { + return mean; }; -- cgit v1.2.3-70-g09d2