aboutsummaryrefslogtreecommitdiffstats
path: root/src/projet.cpp
blob: a89c79328af4daa34976869cc60e706e0d22f72c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include <iostream>
#include <fstream>
#include <vector>
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_math.h>
#include "stratified_sampling.hpp"
#include <cmath>
#include <algorithm>
#include "opti.hpp"
#include "option.hpp"
#include "rqmc.hpp"

using namespace std;

struct first:public std::unary_function<std::vector<double>, double>
{ 
    double operator()(std::vector<double> X){
        return X[0];
        }
};

vector< vector<double> > exemple1_stratified() {
    vector<double> q = quantile_norm(10, 1);
    vector<double> p(10, 0.1);
    vector<gaussian_truncated> rvar;
    rvar.push_back(gaussian_truncated(GSL_NEGINF, q[0]));
    for (int i=1; i<10; i++){
        rvar.push_back(gaussian_truncated(q[i-1], q[i]));
    };
    vector<int> N = {300, 1000, 10000, 20000}; //notre tableau du nombre successif de tirages, qui correspondent aux 300, 1300, 11300 et 31300
                                               //de l'article de Etoré et Jourdain
    vector< vector<double> > data (4);
    stratified_sampling<gaussian_truncated> S(p,rvar);
    cout<<"N"<<"\t"<<"moyenne"<<"\t\t"<<"sigma"<<"\t"<<"théorique"<<endl;
    vector<double> r(4,0);
    for (int i=0; i<4; i++){
        S.draw(N[i]);
        r[0]= r[0] + N[i];
        r[1] = S.estimator().first;
        r[2] = S.estimator().second;
        r[3] = 0.1559335;
        cout<<r[0]<<"\t"<<r[1]<<"\t"<<r[2]<<"\t"<<r[3]<<endl;
        data[i] = r;
    };
    return data;
};

vector< vector<double> > exemple1_rqmc(){
    int I = 100;
    vector<int> N = {3, 13, 113, 313}; //les N choisis pour que les NI soient égaux aux N de l'exemple 1 stratified_sampling
    first f; //comme quasi_gaussian retourne un vecteur, on doit composer avec f pour avoir le double QG()[0]
    vector< vector<double> > data (4);
    for(int i =0; i<4; i++){
        data[i] = monte_carlo (I,quasi_mean<struct first, sobol> (N[i], 1, f));
    }
    cout<<"moyenne"<<"\t\t"<<"sigma"<<"\t\t"<<"taille IC"<<endl;
    for(int i =0; i<3; i++){
        cout<<data[i][0]<<"\t"<<data[i][1]<<"\t"<<data[i][2]<<endl;
    }
    return data;
};

 void exemple2_stratified (){
     int d= 16;
     std::vector<double> mu(d);
     mu = argmax(0.05, 1.0, 50, 0.1, 45, d);
     double norm_mu = 0;
     std::vector<double> u(d);
     for(int i=0; i<d; i++) {
         norm_mu += mu[i]*mu[i];
     }
     for(int i=0; i<d; i++) {
         u[i] = mu[i]/sqrt(norm_mu);
     }
     vector<double> q = quantile_norm(100, 1);
     vector<double> p(100, 0.01);
     asian_option A(0.05, 1.0, 50, 0.1, d, 45);
     exponential_tilt<asian_option> G(mu, A);
     typedef compose_t<exponential_tilt<asian_option>, multi_gaussian_truncated> tilted_option;
     std::vector<tilted_option> X;
     X.push_back(compose(G, multi_gaussian_truncated(GSL_NEGINF,q[0], u)));
     for(int i=1; i<100; i++) {
         X.push_back(compose(G, multi_gaussian_truncated(q[i-1],q[i], u)));
     }
     for(int i=0; i<100; i=i+10){
         std::cout<<X[i]()<<endl;
     }
     stratified_sampling<tilted_option> S(p, X);
     S.draw(1000);
     cout<<"l'estimateur de la moyenne est :"<<S.estimator().first<<endl;
}

void exemple2_rqmc() {
    asian_option A(0.05, 1.0, 50.0, 0.1, 16, 45);
    int N= 10000;
    
    int d =16; 

    
    std::vector<double> result(3);
    result = monte_carlo(100, quasi_mean<asian_option, sobol> (N, d, A));
    for(int i =0; i<3; i++){
        std::cout<<result[i]<<std::endl;
    }
    
    std::vector<double> result2(3);
    result2 = monte_carlo(100, quasi_mean<asian_option, halton> (N, d, A));
    for(int i =0; i<3; i++){
        std::cout<<result2[i]<<std::endl;
    }
};

int make_table(vector< vector<double> > data1, vector< vector<double> > data2) {
    std::fstream fs("doc/table.tex", std::fstream::out);;
    fs<<R"(\begin{tabular}{|l|ll|ll|l|})"<<std::endl;
    fs<<R"(\hline)"<<endl;
    fs<<"N"<<" & "<<R"($\mu_{strat}$)"<<" & "<<R"($\mu_{rqmc}$)"<<" & "<<R"($IC_{strat}$)"<<" & "<<R"($IC_{rqmc}$)"<<" & "<<"Ratio strat/rqmc"<<R"(\\ \hline)"<<std::endl;
    for (int i=0; i< 4; i++) {
        double ic_strat = 1.95996*sqrt(data1[i][2]/(double) data1[i][0]);
        fs<<data1[i][0]<<"&"<<data1[i][1]<<"&"<<data2[i][0]<<"&"<<ic_strat<<"&"<<data2[i][2]/2<<"&"<<ic_strat/(data2[i][2]/2)<<R"(\\ \hline)"<<std::endl;
    }
    fs<<R"(\end{tabular})"<<std::endl;
    fs.close();
    return 0;
}

int main()
{   
    init_alea(1);
    cout<<gsl_cdf_gaussian_Pinv(0.975,1)<<endl;
    cout<<"Stratified_sampling sur l'exemple 1 de la normale"<<endl;
    vector< vector<double> > data1 = exemple1_stratified(); 
    cout<<"Randomised quasi Monte-Carlo sur l'exemple 1 de la normale"<<endl;
    vector< vector<double> > data2 = exemple1_rqmc();
    make_table(data1, data2);
    return 0;
    
}