aboutsummaryrefslogtreecommitdiffstats
path: root/stratified_sampling.hpp
blob: e25ac63cd1bf8a70fd3d776135a8f0e670ae2b3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include <vector>
#include <algorithm>
#include <iostream>
#include <gsl/gsl_rng.h>
#include "rtnorm.hpp"

using namespace std;

template <typename T>
struct var_alea {
    typedef T result_type;
    var_alea() : value(0) {};
    var_alea(T value) : value(value) {};
    virtual ~var_alea() {};
    virtual T operator()() = 0;
    T current() const { return value; };
protected:
    T value;
};

typedef var_alea<double> var_alea_real;

struct gaussian_truncated : public var_alea_real
{
    gaussian_truncated(double a, double b, double mean=0, double sigma2=1, int seed=0)
        :a(a), b(b), mean(mean), sigma2(sigma2), seed(seed) {
        const gsl_rng_type* type = gsl_rng_default;
        gen = gsl_rng_alloc(type);
        gsl_rng_set(gen, seed);
    };
    gaussian_truncated(gaussian_truncated const &other)
        :a(other.a),b(other.b), mean(other.mean),sigma2(other.sigma2){
        gen = gsl_rng_clone(other.gen);
    };

    double operator()() {
        pair<double, double> p = rtnorm(gen, a, b, mean, sigma2);
        return value = p.first;
    };

    ~gaussian_truncated() { gsl_rng_free(gen); }
private:
    int seed;
    double mean, sigma2, a, b;
    gsl_rng *gen;
};

template <typename Gen>
struct stratified_sampling {
    stratified_sampling(vector<double> p, vector<Gen> gen)
        :p(p), gen(gen), mean(p.size(), 0), sigma2(p.size(), 0){};
    void update(int N);
    void draw();
    vector<double> get_mean();
    //double estimator();
private:
    vector<double> p;
    vector<int> M;
    vector<int> cumM;
    vector<double> mean;
    vector<double> sigma2;
    vector<Gen> gen;

};

//actualisation du nombre de tirages à faire par strates
template <typename Gen>
void stratified_sampling<Gen>::update(int Nk) {
    int I = p.size();
    bool first_step = M.empty();
    //reinitialistation du vecteur M du nombre de tirages par strates
    if (first_step) {
        M.resize(I,1);
        cumM.resize(I,0);
    }
    else {
        for(int i=0; i<I; i++){
            cumM[i]=cumM[i]+M[i];
            M[i]=1;
        }
    }

    std::vector<double> m(I, 0); //le vecteur des m_i idéals

    if (first_step) {
        for (int i=0; i<I; i++) {
            m[i] = (Nk-I)*p[i];
        }
    }
    else {
				//On remplit un vecter des écarts types à parti de notre vecteur de variance
				std::vector<double> sigma(p.size(),0);
				for (int i=0; i < I; i++) {
					sigma[i]=sqrt(sigma2[i]);
				}
        double scal = std::inner_product(p.begin(), p.end(), sigma.begin(), (double) 0);
        for (int i=0; i < I; i++) {
            m[i] = (Nk-I)*p[i]*sigma[i]/scal;
            std::cout<<m[i]<<std::endl;
        }
    }
    M[0]+=floor(m[0]);
    double current = m[0];
    for (int i=1; i<I; i++){
        M[i] += floor(current+m[i]) - floor(current);
        current += m[i];
        cout<<M[i]<<"\t";
    }
    cout<<endl;
}

template <typename Gen>
void stratified_sampling<Gen>::draw() {
    int I = p.size();
    double m, s, oldmean;
    for(int i=0;i<I;i++){
        m=0;
        s=0;
        for(int j=0;j<M[i];j++){
            m=m+gen[i]();
            s=s+gen[i].current()*gen[i].current();
        }
        oldmean=mean[i];
        mean[i]=(mean[i]*cumM[i]+m)/(cumM[i]+M[i]);
        sigma2[i]=((sigma2[i]+oldmean*oldmean)*cumM[i] + s)/(cumM[i]+M[i]) - mean[i]*mean[i];
    }
};

template <typename Gen>
vector<double> stratified_sampling<Gen>::get_mean() {
    return mean;
};