aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/swaption_calendar_spread.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/exploration/swaption_calendar_spread.py')
-rw-r--r--python/exploration/swaption_calendar_spread.py89
1 files changed, 0 insertions, 89 deletions
diff --git a/python/exploration/swaption_calendar_spread.py b/python/exploration/swaption_calendar_spread.py
deleted file mode 100644
index e21ffd66..00000000
--- a/python/exploration/swaption_calendar_spread.py
+++ /dev/null
@@ -1,89 +0,0 @@
-import sys
-#don't do this at home
-sys.path.append("..")
-from analytics import (Swaption, BlackSwaption, BlackSwaptionVolSurface,
- Index, ProbSurface, Portfolio)
-from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios
-from pandas.tseries.offsets import BDay
-import datetime
-import numpy as np
-import pandas as pd
-from scipy.interpolate import SmoothBivariateSpline
-
-import os
-import numpy as np
-import matplotlib
-import matplotlib.pyplot as plt
-from graphics import plot_time_color_map, plot_color_map
-
-from db import dbengine
-engine = dbengine('serenitasdb')
-
-def plot_df(df, spread_shock, vol_shock, attr="pnl"):
- val_date = df.index[0].date()
- fig = plt.figure()
-
- ax = fig.gca(projection='3d')
- ## use smoothing spline on a finer grid
- series = df[attr]
- f = SmoothBivariateSpline(df.vol_shock.values, df.spread_shock.values, series.values)
- xx, yy = np.meshgrid(vol_shock, spread_shock)
- surf = ax.plot_surface(xx, yy, f(vol_shock, spread_shock).T, cmap=cm.viridis)
- ax.set_xlabel("Volatility shock")
- ax.set_ylabel("Spread")
- ax.set_zlabel("PnL")
- ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))
-
-def plot_trade_scenarios(portf, shock_min=-.15, shock_max=.2, period=-1, vol_time_roll=True):
- portf.reset_pv()
- earliest_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date
- date_range = pd.bdate_range(portf.indices[0].trade_date,
- earliest_date - BDay(), freq='3B')
- vol_shock = np.arange(-0.15, 0.3, 0.01)
- spread_shock = np.arange(shock_min, shock_max, 0.01)
- index = portf.indices[0].name.split()[1]
- series = portf.indices[0].name.split()[3][1:]
- vs = BlackSwaptionVolSurface(index, series, trade_date=portf.indices[0].trade_date)
- vol_surface = vs[vs.list(option_type='payer')[-1]]
-
- df = run_portfolio_scenarios(portf, date_range, spread_shock, vol_shock, vol_surface,
- params=["pnl","delta"])
-
- hy_plot_range = 100 + (500 - portf.indices[0].spread * (1 + spread_shock)) * \
- abs(portf.indices[0].DV01) / portf.indices[0].notional * 100
-
- shock = hy_plot_range if index == 'HY' else portf.indices[0].spread * (1 + spread_shock)
-
- plot_time_color_map(df[round(df.vol_shock,2)==0], shock, 'pnl', index=index)
- plot_time_color_map(df[round(df.vol_shock,2)==.2], shock, 'pnl', index=index)
- plot_color_map(df.loc[date_range[period]], shock, vol_shock, 'pnl', index=index)
- return df
-
-def exercise_probability():
- engine = dbengine('serenitasdb')
- #Ad hoc
- option_delta = Index.from_name('HY', 29, '5yr')
- option_delta.price = 107.875
- option1 = BlackSwaption(option_delta, datetime.date(2017, 12, 20), 107, option_type="payer")
- option2 = BlackSwaption(option_delta, datetime.date(2017, 12, 20), 105, option_type="payer")
- option1.sigma = .280
- option2.sigma = .371
- option1.notional = 20_000_000
- option2.notional = 40_000_000
- option1.direction = 'Long'
- option2.direction = 'Short'
- option_delta.notional = option1.notional * option1.delta + option2.notional * option2.delta
- option_delta.direction = 'Seller' if option_delta.notional > 0 else 'Buyer'
- option_delta.notional = abs(option_delta.notional)
- portf = Portfolio([option1, option2, option_delta])
-
- portf.reset_pv()
- earliest_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date
- date_range = pd.bdate_range(portf.indices[0].trade_date, earliest_date - BDay(), freq='5B')
- vol_shock = np.arange(-0.15, 0.3, 0.01)
- spread_shock = np.arange(-0.15, 0.35, 0.01)
- index = portf.indices[0].name.split()[1]
- series = portf.indices[0].name.split()[3][1:]
-
- vs = ProbSurface(index, series, trade_date=portf.indices[0].trade_date)
- vs.plot(vs.list()[-1])