diff options
Diffstat (limited to 'python/index_data.py')
| -rw-r--r-- | python/index_data.py | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/python/index_data.py b/python/index_data.py new file mode 100644 index 00000000..bf772100 --- /dev/null +++ b/python/index_data.py @@ -0,0 +1,106 @@ +from db import dbengine, dbconn +from dates import bond_cal + +import datetime +import pandas as pd +serenitasdb = dbengine('serenitasdb') + +def insert_quotes(): + # backpopulate some version i+1 quotes one day before they start trading so that + # we get continuous time series in the rb + eturns + dates = pd.DatetimeIndex(['2014-05-21', '2015-02-19', '2015-03-05','2015-06-23']) + df = pd.read_sql_query("SELECT DISTINCT ON (date) * FROM index_quotes " \ + "WHERE index='HY' AND tenor='5yr' " \ + "ORDER BY date, series DESC, version DESC", + serenitasdb, parse_dates=['date'], index_col=['date']) + df = df.loc[dates] + for tup in df.itertuples(): + result = serenitasdb.execute("SELECT indexfactor, cumulativeloss FROM index_version " \ + "WHERE index = 'HY' AND series=%s AND version in (%s, %s)" \ + "ORDER BY version", + (tup.series, tup.version, tup.version+1)) + factor1, cumloss1 = result.fetchone() + factor2, cumloss2 = result.fetchone() + recovery = 1-(cumloss2-cumloss1) + version2_price = (factor1 * tup.closeprice - 100*recovery)/factor2 + print(version2_price) + serenitasdb.execute("INSERT INTO index_quotes(date, index, series, version, tenor, closeprice)" \ + "VALUES(%s, %s, %s, %s, %s, %s)", + (tup.Index, 'HY', tup.series, tup.version+1, tup.tenor, version2_price)) + +def get_index_quotes(index=None, series=None, tenor=None, date=None, years=3): + args = locals().copy() + if args['years'] is not None: + args['date'] = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() + del args['years'] + + def make_str(key, val): + if isinstance(val, list): + op = "IN" + return "{} IN %({})s".format(key, key) + elif isinstance(val, datetime.date): + op = ">=" + else: + op = "=" + return "{} {} %({})s".format(key, op, key) + + where_clause = " AND ".join(make_str(k, v) + for k, v in args.items() if v is not None) + sql_str = "SELECT * FROM index_quotes" + if where_clause: + sql_str = " WHERE ".join([sql_str, where_clause]) + + def make_params(args): + return {k: tuple(v) if isinstance(v, list) else v + for k, v in args.items() if v is not None} + + df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], + index_col=['date', 'index', 'series', 'version', 'tenor'], + params = make_params(args)) + df.sort_index(inplace=True) + ## get rid of US holidays + dates = df.index.levels[0] + if index in ['IG', 'HY']: + holidays = bond_cal().holidays(start=dates[0], end=dates[-1]) + df = df.loc(axis=0)[dates.difference(holidays),:,:] + return df + +def index_returns(df=None, index=None, series=None, tenor=None, date=None, years=3): + """computes daily spreads and price returns + + Parameters + ---------- + df : pandas.DataFrame + index : str or List[str], optional + index type, one of 'IG', 'HY', 'EU', 'XO' + series : int or List[int], optional + tenor : str or List[str], optional + tenor in years e.g: '3yr', '5yr' + date : datetime.date, optional + starting date + years : int, optional + limits many years do we go back starting from today. + + """ + if df is None: + df = get_index_quotes(index, series, tenor, date, years) + df = (df. + groupby(level=['index', 'series', 'version', 'tenor']) + [['closespread','closeprice']]. + pct_change()) + df.columns = ['spread_return', 'price_return'] + df = df.groupby(level=['date', 'index', 'series', 'tenor']).nth(-1) + coupon_data = pd.read_sql_query("SELECT index, series, tenor, coupon FROM " \ + "index_maturity WHERE coupon is NOT NULL", serenitasdb, + index_col=['index', 'series', 'tenor']) + def add_accrued(df): + coupon = coupon_data.loc[df.index[0][1:],'coupon'] * 1e-4 + accrued = (df.index.levels[0].to_series().diff(). + astype('timedelta64[D]')/360 * coupon) + return df + accrued + + df['price_return'] = (df. + groupby(level=['index', 'series', 'tenor'])['price_return']. + transform(add_accrued)) + return df |
