aboutsummaryrefslogtreecommitdiffstats
path: root/python/index_data.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/index_data.py')
-rw-r--r--python/index_data.py106
1 files changed, 106 insertions, 0 deletions
diff --git a/python/index_data.py b/python/index_data.py
new file mode 100644
index 00000000..bf772100
--- /dev/null
+++ b/python/index_data.py
@@ -0,0 +1,106 @@
+from db import dbengine, dbconn
+from dates import bond_cal
+
+import datetime
+import pandas as pd
+serenitasdb = dbengine('serenitasdb')
+
+def insert_quotes():
+ # backpopulate some version i+1 quotes one day before they start trading so that
+ # we get continuous time series in the rb
+ eturns
+ dates = pd.DatetimeIndex(['2014-05-21', '2015-02-19', '2015-03-05','2015-06-23'])
+ df = pd.read_sql_query("SELECT DISTINCT ON (date) * FROM index_quotes " \
+ "WHERE index='HY' AND tenor='5yr' " \
+ "ORDER BY date, series DESC, version DESC",
+ serenitasdb, parse_dates=['date'], index_col=['date'])
+ df = df.loc[dates]
+ for tup in df.itertuples():
+ result = serenitasdb.execute("SELECT indexfactor, cumulativeloss FROM index_version " \
+ "WHERE index = 'HY' AND series=%s AND version in (%s, %s)" \
+ "ORDER BY version",
+ (tup.series, tup.version, tup.version+1))
+ factor1, cumloss1 = result.fetchone()
+ factor2, cumloss2 = result.fetchone()
+ recovery = 1-(cumloss2-cumloss1)
+ version2_price = (factor1 * tup.closeprice - 100*recovery)/factor2
+ print(version2_price)
+ serenitasdb.execute("INSERT INTO index_quotes(date, index, series, version, tenor, closeprice)" \
+ "VALUES(%s, %s, %s, %s, %s, %s)",
+ (tup.Index, 'HY', tup.series, tup.version+1, tup.tenor, version2_price))
+
+def get_index_quotes(index=None, series=None, tenor=None, date=None, years=3):
+ args = locals().copy()
+ if args['years'] is not None:
+ args['date'] = (pd.Timestamp.now() - pd.DateOffset(years=years)).date()
+ del args['years']
+
+ def make_str(key, val):
+ if isinstance(val, list):
+ op = "IN"
+ return "{} IN %({})s".format(key, key)
+ elif isinstance(val, datetime.date):
+ op = ">="
+ else:
+ op = "="
+ return "{} {} %({})s".format(key, op, key)
+
+ where_clause = " AND ".join(make_str(k, v)
+ for k, v in args.items() if v is not None)
+ sql_str = "SELECT * FROM index_quotes"
+ if where_clause:
+ sql_str = " WHERE ".join([sql_str, where_clause])
+
+ def make_params(args):
+ return {k: tuple(v) if isinstance(v, list) else v
+ for k, v in args.items() if v is not None}
+
+ df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'],
+ index_col=['date', 'index', 'series', 'version', 'tenor'],
+ params = make_params(args))
+ df.sort_index(inplace=True)
+ ## get rid of US holidays
+ dates = df.index.levels[0]
+ if index in ['IG', 'HY']:
+ holidays = bond_cal().holidays(start=dates[0], end=dates[-1])
+ df = df.loc(axis=0)[dates.difference(holidays),:,:]
+ return df
+
+def index_returns(df=None, index=None, series=None, tenor=None, date=None, years=3):
+ """computes daily spreads and price returns
+
+ Parameters
+ ----------
+ df : pandas.DataFrame
+ index : str or List[str], optional
+ index type, one of 'IG', 'HY', 'EU', 'XO'
+ series : int or List[int], optional
+ tenor : str or List[str], optional
+ tenor in years e.g: '3yr', '5yr'
+ date : datetime.date, optional
+ starting date
+ years : int, optional
+ limits many years do we go back starting from today.
+
+ """
+ if df is None:
+ df = get_index_quotes(index, series, tenor, date, years)
+ df = (df.
+ groupby(level=['index', 'series', 'version', 'tenor'])
+ [['closespread','closeprice']].
+ pct_change())
+ df.columns = ['spread_return', 'price_return']
+ df = df.groupby(level=['date', 'index', 'series', 'tenor']).nth(-1)
+ coupon_data = pd.read_sql_query("SELECT index, series, tenor, coupon FROM " \
+ "index_maturity WHERE coupon is NOT NULL", serenitasdb,
+ index_col=['index', 'series', 'tenor'])
+ def add_accrued(df):
+ coupon = coupon_data.loc[df.index[0][1:],'coupon'] * 1e-4
+ accrued = (df.index.levels[0].to_series().diff().
+ astype('timedelta64[D]')/360 * coupon)
+ return df + accrued
+
+ df['price_return'] = (df.
+ groupby(level=['index', 'series', 'tenor'])['price_return'].
+ transform(add_accrued))
+ return df