aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Single Names Monitoring.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/Single Names Monitoring.ipynb')
-rw-r--r--python/notebooks/Single Names Monitoring.ipynb67
1 files changed, 55 insertions, 12 deletions
diff --git a/python/notebooks/Single Names Monitoring.ipynb b/python/notebooks/Single Names Monitoring.ipynb
index 62a1383a..17e0c40d 100644
--- a/python/notebooks/Single Names Monitoring.ipynb
+++ b/python/notebooks/Single Names Monitoring.ipynb
@@ -3,7 +3,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
"import pandas as pd\n",
@@ -11,7 +15,7 @@
"from analytics.basket_index import MarkitBasketIndex\n",
"import matplotlib.pyplot as plt\n",
"\n",
- "from db import dbengine\n",
+ "from utils.db import dbengine\n",
"from ipywidgets import widgets\n",
"engine = dbengine('serenitasdb')"
]
@@ -19,7 +23,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
"w = widgets.Dropdown(\n",
@@ -34,17 +42,25 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
- "w_1 = widgets.IntSlider(value=31, min=22, max=31, description = 'Series')\n",
+ "w_1 = widgets.IntSlider(value=32, min=22, max=32, description = 'Series')\n",
"w_1"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
"value_date = (pd.datetime.today() - pd.offsets.BDay(2)).date()\n",
@@ -76,7 +92,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
"#Additions\n",
@@ -86,7 +106,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
"date_range = pd.bdate_range(value_date - 52 * pd.offsets.Week(), value_date, freq='5B')\n",
@@ -103,7 +127,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": [
"#Top 20 highest cumulative\n",
@@ -119,7 +147,22 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {},
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
"outputs": [],
"source": []
}
@@ -140,9 +183,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.0"
+ "version": "3.7.3"
}
},
"nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
}