aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/brinker_reports.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/brinker_reports.ipynb')
-rw-r--r--python/notebooks/brinker_reports.ipynb68
1 files changed, 50 insertions, 18 deletions
diff --git a/python/notebooks/brinker_reports.ipynb b/python/notebooks/brinker_reports.ipynb
index 58b8dde7..03b0a2b4 100644
--- a/python/notebooks/brinker_reports.ipynb
+++ b/python/notebooks/brinker_reports.ipynb
@@ -10,14 +10,14 @@
"from pandas.tseries.offsets import BDay, MonthEnd\n",
"import globeop_reports as go\n",
"import pandas as pd\n",
- "import analytics\n",
+ "import serenitas.analytics\n",
"import numpy as np\n",
"\n",
- "from analytics.index_data import get_index_quotes\n",
- "from analytics.scenarios import run_portfolio_scenarios\n",
- "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
+ "from serenitas.analytics.index_data import get_index_quotes\n",
+ "from serenitas.analytics.scenarios import run_portfolio_scenarios\n",
+ "from serenitas.analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
"\n",
- "from utils.db import dbconn, dbengine\n",
+ "from serenitas.utils.db import dbconn, dbengine\n",
"\n",
"from risk.tranches import get_tranche_portfolio\n",
"from risk.swaptions import get_swaption_portfolio\n",
@@ -35,17 +35,17 @@
"################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
"#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
"fund='BRINKER'\n",
- "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
+ "sql_string = \"SELECT * FROM bond_trades WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
" params=[fund,],\n",
" index_col = 'trade_date')\n",
"df = df.groupby(pd.Grouper(freq='M')).sum()\n",
"\n",
- "brinker_nav = pd.read_csv(\n",
- " \"/home/serenitas/edwin/Python/brinker_nav.csv\",\n",
- " parse_dates=[\"date\"],\n",
- " index_col=[\"date\"])\n",
+ "brinker_nav = pd.read_sql_query(\"select distinct accounting_date, total_net_assets from bbh_val order by accounting_date desc\",\n",
+ " dawn_engine,\n",
+ " parse_dates=[\"accounting_date\"],\n",
+ " index_col=[\"accounting_date\"])\n",
"\n",
"start_date = datetime.date(2019,3,18)\n",
"end_date = datetime.date.today()\n",
@@ -68,7 +68,7 @@
"paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
"turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
"brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
- "turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()"
+ "turnover = (turnover.sum(axis=1)/brinker_nav.total_net_assets).rolling(min(13, len(turnover))-1).sum()"
]
},
{
@@ -90,13 +90,13 @@
"df = df.merge(flow, how='left', left_index=True, right_index=True)\n",
"df.fillna(0, inplace=True)\n",
"df['beg_nav'] = df.total_net_assets.shift(1) + df.subscription.shift(1) - df.redemption\n",
- "df.loc['2019-3-19','beg_nav'] = 110000000\n",
+ "df.loc['2019-3-19','total_net_asset'] = 110000000\n",
"df['ret'] = (df.total_net_assets - df.beg_nav)/df.beg_nav\n",
"cum_ret = (df.ret+1).cumprod()\n",
"\n",
"monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)\n",
- "quarterly = cum_ret.groupby(pd.Grouper(freq='Q')).nth(-1)\n",
- "monthly.pct_change(), quarterly.pct_change()"
+ "\n",
+ "#monthly.pct_change().plot()"
]
},
{
@@ -112,13 +112,45 @@
"sql_string = \"SELECT * from securities\"\n",
"bonds = pd.read_sql_query(sql_string, dawn_engine, index_col = 'cusip')\n",
"pnl = pnl.merge(bonds, how='left', left_on='security_id', right_on='cusip')\n",
- "pnl.loc[(pnl.sub_security_type_code == 'CXT'),'asset_class'] = 'Tranches'\n",
- "pnl.loc[(pnl.sub_security_type_code == 'CDX'),'asset_class'] = 'Tranches'\n",
+ "pnl.loc[(pnl.sub_security_type_code == 'CXT'),'asset_class'] = 'Corporate Tranches'\n",
+ "pnl.loc[(pnl.sub_security_type_code == 'CDX'),'asset_class'] = 'Corporate Tranches'\n",
"pnl.loc[(pnl.sub_security_type_code == 'SWP'),'asset_class'] = 'IR-Hedges'\n",
"pnl.asset_class.fillna('Others', inplace=True)\n",
"pnl.set_index(['accounting_date', 'asset_class'], inplace=True)\n",
"base_change = pnl['base_change_total'].groupby(['accounting_date', 'asset_class']).sum()\n",
- "base_change.unstack()\n"
+ "base_change.unstack()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Export to spreadsheet\n",
+ "df.sort_index(ascending=False)[['total_net_assets', 'subscription', 'redemption']].to_clipboard()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Export to spreadsheet 2\n",
+ "base_change.unstack().sort_index(ascending=False).to_clipboard()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#load bbh val reports\n",
+ "import load_bbh_reports as load\n",
+ "load_date = datetime.date(2020,9,7)\n",
+ "load.load_reports(load_date)"
]
}
],
@@ -138,7 +170,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.1"
+ "version": "3.9.1-final"
}
},
"nbformat": 4,