aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/risk_sabo.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/risk_sabo.ipynb')
-rw-r--r--python/notebooks/risk_sabo.ipynb73
1 files changed, 45 insertions, 28 deletions
diff --git a/python/notebooks/risk_sabo.ipynb b/python/notebooks/risk_sabo.ipynb
index d4e1bc9b..1ee43fdb 100644
--- a/python/notebooks/risk_sabo.ipynb
+++ b/python/notebooks/risk_sabo.ipynb
@@ -12,11 +12,17 @@
"import analytics\n",
"import numpy as np\n",
"\n",
- "from pandas.tseries.offsets import BDay, MonthEnd\n",
+ "from pandas.tseries.offsets import BDay, BMonthEnd\n",
"from analytics.scenarios import run_portfolio_scenarios\n",
- "from utils.db import dbconn\n",
"from risk.portfolio import build_portfolio, generate_vol_surface\n",
- "from analytics.basket_index import BasketIndex"
+ "from pathlib import Path"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Set dates"
]
},
{
@@ -25,12 +31,18 @@
"metadata": {},
"outputs": [],
"source": [
- "#Set dates\n",
- "position_date = (datetime.date.today() - MonthEnd(1)).date()\n",
+ "position_date = (datetime.date.today() - BMonthEnd(1)).date()\n",
"spread_date = position_date\n",
"analytics._local = False\n",
"analytics.init_ontr(spread_date)\n",
- "path = '/home/serenitas/Daily/Risk/'"
+ "base_dir = Path('/home/serenitas/Daily/Risk/')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Run credit spread scenarios"
]
},
{
@@ -39,7 +51,6 @@
"metadata": {},
"outputs": [],
"source": [
- "################################### Run Credit Spread scenarios\n",
"spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
"spread_shock /= analytics._ontr['HY'].spread\n",
"portf, _ = build_portfolio(position_date, spread_date)\n",
@@ -50,7 +61,15 @@
" vol_shock=[0.0],\n",
" corr_shock=[0.0],\n",
" vol_surface=vol_surface)\n",
- "scens.sum(axis=1).to_csv(path+'csscen_'+position_date.strftime(\"%Y%m%d\")+'.csv')"
+ "scens = scens.sum(axis=1)\n",
+ "scens.to_csv(base_dir / f\"csscen_{position_date:%Y%m%d}.csv\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Jump to default"
]
},
{
@@ -59,24 +78,8 @@
"metadata": {},
"outputs": [],
"source": [
- "################################### JTD\n",
"_, portf = build_portfolio(position_date, spread_date)\n",
- "jtd_i = []\n",
- "for t in portf.indices:\n",
- " bkt = BasketIndex(t.index_type, t.series, [t.tenor])\n",
- " spreads = pd.DataFrame(bkt.spreads() * 10000, index=pd.Index(bkt.tickers, name='ticker'), columns=['spread'])\n",
- " jump = pd.merge(spreads, bkt.jump_to_default() * t.notional, left_index=True, right_index=True)\n",
- " jtd_i.append(jump.rename(columns={jump.columns[1]: 'jtd'}))\n",
- "jtd_t = []\n",
- "for t in portf.tranches:\n",
- " jump = pd.concat([t.singlename_spreads().reset_index(['seniority', 'doc_clause'], drop=True), t.jump_to_default().rename('jtd')], axis=1)\n",
- " jtd_t.append(jump.drop(['weight', 'recovery'], axis=1))\n",
- "\n",
- "ref_names = pd.read_sql_query(\"select ticker, referenceentity from refentity\", dbconn('serenitasdb'), index_col='ticker')\n",
- "jump = pd.concat([pd.concat(jtd_t), pd.concat(jtd_i)])\n",
- "jump = jump.merge(ref_names, left_index=True, right_index=True)\n",
- "jump = jump.groupby('referenceentity').agg({'spread': np.mean, 'jtd': np.sum}).sort_values(by='jtd', ascending=True)\n",
- "jump.to_csv(path+'jtd_'+position_date.strftime(\"%Y%m%d\")+'.csv')"
+ "jtd = portf.jtd_single_names()"
]
},
{
@@ -85,13 +88,27 @@
"metadata": {},
"outputs": [],
"source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3.8.1 64-bit",
+ "display_name": "Python 3",
"language": "python",
- "name": "python38164bitc40c8740e5d542d7959acb14be96f4f3"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -103,7 +120,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.5"
+ "version": "3.8.6"
}
},
"nbformat": 4,