aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks')
-rw-r--r--python/notebooks/bespokes/Bozeman.ipynb22
-rw-r--r--python/notebooks/bespokes/Phoenix.ipynb163
-rw-r--r--python/notebooks/bespokes/Venice.ipynb2
-rw-r--r--python/notebooks/bespokes/zero_recovery_EUXO.ipynb154
4 files changed, 335 insertions, 6 deletions
diff --git a/python/notebooks/bespokes/Bozeman.ipynb b/python/notebooks/bespokes/Bozeman.ipynb
index 5183a338..43aa1174 100644
--- a/python/notebooks/bespokes/Bozeman.ipynb
+++ b/python/notebooks/bespokes/Bozeman.ipynb
@@ -37,7 +37,7 @@
"metadata": {},
"outputs": [],
"source": [
- "bozeman.value_date=datetime.date(2019, 3, 5)"
+ "bozeman.value_date=datetime.date(2019, 5, 1)"
]
},
{
@@ -46,7 +46,7 @@
"metadata": {},
"outputs": [],
"source": [
- "bozeman"
+ "bozeman.mark(skew=ig29.skew)"
]
},
{
@@ -64,7 +64,19 @@
"metadata": {},
"outputs": [],
"source": [
- "bs1._index.spread()"
+ "#Bozeman\n",
+ "import pandas as pd\n",
+ "date_range = pd.bdate_range(end=datetime.date.today(), periods=16, freq = '5B')\n",
+ "df = pd.DataFrame(index = date_range, columns = ['spread', 'duration', 'port_spread'])\n",
+ "index = TrancheBasket(\"IG\", 29, \"5yr\")\n",
+ "tranche = DualCorrTranche.from_tradeid(1037)\n",
+ "for date in date_range:\n",
+ " index.value_date = date\n",
+ " index.tweak()\n",
+ " index.build_skew()\n",
+ " tranche.value_date = date\n",
+ " tranche.mark(skew=index.skew)\n",
+ " df.loc[date] = [tranche.spread, tranche.duration, tranche._index.spread()[0]/10000]"
]
},
{
@@ -73,7 +85,7 @@
"metadata": {},
"outputs": [],
"source": [
- "bs1.spread"
+ "df[['spread', 'port_spread']].plot()"
]
},
{
@@ -136,7 +148,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.2"
+ "version": "3.7.3"
}
},
"nbformat": 4,
diff --git a/python/notebooks/bespokes/Phoenix.ipynb b/python/notebooks/bespokes/Phoenix.ipynb
new file mode 100644
index 00000000..3d546576
--- /dev/null
+++ b/python/notebooks/bespokes/Phoenix.ipynb
@@ -0,0 +1,163 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from analytics.tranche_basket import DualCorrTranche, TrancheBasket\n",
+ "import datetime"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ig29 = TrancheBasket(\"IG\", 29, \"5yr\")\n",
+ "ig29.tweak()\n",
+ "ig29.build_skew()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "phoenix = DualCorrTranche(\"BS\", 4, \"3yr\",attach=15, detach=30, corr_attach=None, corr_detach=None, tranche_running=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "phoenix.value_date=datetime.date.today()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "phoenix.mark(skew=ig29.skew)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "phoenix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "(phoenix.spread, phoenix.duration, phoenix._index.spread())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Phoenix\n",
+ "import pandas as pd\n",
+ "date_range = pd.bdate_range(end=datetime.date.today(), periods=20, freq = '3B')\n",
+ "df = pd.DataFrame(index = date_range, columns = ['spread', 'duration', 'port_spread'])\n",
+ "index = TrancheBasket(\"IG\", 29, \"5yr\")\n",
+ "tranche = DualCorrTranche(\"BS\", 4, \"3yr\",attach=15, detach=30, corr_attach=None, corr_detach=None, tranche_running=100)\n",
+ "for date in date_range:\n",
+ " index.value_date = date\n",
+ " index.tweak()\n",
+ " index.build_skew()\n",
+ " tranche.value_date = date\n",
+ " tranche.mark(skew=index.skew)\n",
+ " df.loc[date] = [tranche.spread, tranche.duration, tranche._index.spread()[0]/10000]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df[['spread', 'port_spread']].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pyisda.curve import Senior, MM14\n",
+ "palma._index[(\"CMACGM\", Senior, MM14)].to_series()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "jtd = palma.jump_to_default(ig29.skew)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "jtd.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/python/notebooks/bespokes/Venice.ipynb b/python/notebooks/bespokes/Venice.ipynb
index fc15082d..ce464653 100644
--- a/python/notebooks/bespokes/Venice.ipynb
+++ b/python/notebooks/bespokes/Venice.ipynb
@@ -128,7 +128,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.2"
+ "version": "3.7.3"
}
},
"nbformat": 4,
diff --git a/python/notebooks/bespokes/zero_recovery_EUXO.ipynb b/python/notebooks/bespokes/zero_recovery_EUXO.ipynb
new file mode 100644
index 00000000..3b3204f1
--- /dev/null
+++ b/python/notebooks/bespokes/zero_recovery_EUXO.ipynb
@@ -0,0 +1,154 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from analytics.tranche_basket import DualCorrTranche, TrancheBasket\n",
+ "from pandas.tseries.offsets import BDay\n",
+ "\n",
+ "import scipy.interpolate as intp\n",
+ "import numpy as np\n",
+ "import datetime"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "index = 'EU'\n",
+ "series = 30\n",
+ "value_date=datetime.date.today() - BDay(1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx = TrancheBasket(index, series, \"5yr\", value_date=value_date)\n",
+ "idx.tweak()\n",
+ "idx.build_skew()\n",
+ "a,b, bond_prices =idx.tranche_pvs()\n",
+ "bond_prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx.tranche_spreads()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a,b, bond_prices = idx.tranche_pvs(zero_recovery=True)\n",
+ "bond_prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx.tranche_spreads(zero_recovery=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#map rho to the new expected loss\n",
+ "idx_zero_loss = idx.expected_loss()/(1-idx.recovery_rates.mean())\n",
+ "exp_loss = np.zeros(1)\n",
+ "for k in idx.K[1:]:\n",
+ " exp_loss = np.append(exp_loss, idx.expected_loss_trunc(k))\n",
+ "moneyness = np.divide(idx.K, exp_loss)\n",
+ "zero_moneyness = np.divide(idx.K, exp_loss/(1-idx.recovery_rates.mean()))\n",
+ "extrapolate = intp.interp1d(moneyness[1:4], idx.rho[1:4], fill_value='extrapolate')\n",
+ "idx.rho[1:4] = extrapolate(zero_moneyness[1:4])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "a,b, bond_prices = idx.tranche_pvs(zero_recovery=True)\n",
+ "bond_prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idx.tranche_spreads(zero_recovery=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#top down - to price SS\n",
+ "idx.build_skew(skew_type='topdown')\n",
+ "extrapolate = intp.interp1d(moneyness[1:4], idx.rho[1:4], fill_value='extrapolate')\n",
+ "idx.rho[1:4] = extrapolate(zero_moneyness[1:4])\n",
+ "idx.tranche_spreads(zero_recovery=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}