library(ggplot2) library(lubridate) library(doParallel) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } hostname <- system("hostname", intern=TRUE) if(hostname=="debian"){ registerDoParallel(4) }else{ registerDoParallel(8) } source(file.path(root.dir, "code", "R", "serenitasdb.R")) source(file.path(root.dir, "code", "R", "cds_functions_generic.R")) source(file.path(root.dir, "code", "R", "yieldcurve.R")) get.indexquotes <- function(index, series, tenors=c("3yr", "5yr", "7yr")){ arraystring1 <- paste0("Array[''", paste(tenors, collapse = "'', ''"), "'']::tenor[]") arraystring2 <- paste0('"', paste(tenors, collapse='" float, "'), '" float') sqlstr <- paste("select * from crosstab('select date, tenor, closeprice from index_quotes", "where index=''%s''", "and series=%s order by date, tenor', 'select unnest(%s)')", "AS ct(date date, %s)") stmt <- sprintf(sqlstr, index, series, arraystring1, arraystring2) df <- dbGetQuery(serenitasdb, stmt) return( df ) } get.indexmaturity <- function(index, series){ sqlstr <- paste("select maturity, coupon/cast(10000 as float)as running, tenor", "from index_maturity where index='%s'", "and series=%s order by maturity") stmt <- sprintf(sqlstr, index, series) df <- dbGetQuery(serenitasdb, stmt) return( df ) } fastduration <- function(sc, cs, tradedate, maturities){ r <- rep(NA, length(maturities)) if(is.null(sc)){ return( r ) } startdate <- tradedate+1 acc <- cdsAccrued(tradedate, 1) for(i in seq_along(maturities)){ if(startdate>maturities[i]){ r[i] <- NA }else{ r[i] <- couponleg(cs[cs$unadj.dates<=maturities[i],], sc, startdate, accruedondefault=TRUE)-acc } } return( r ) } fasttheta <- function(sc, cs, recov, tradedate, maturities, quotes){ r <- rep(NA, length(maturities)) if(is.null(sc)){ return(r) } startdate <- tradedate+1 acc <- cdsAccrued(tradedate, 1) newmaturities <- maturities+years(-1) for(i in seq_along(newmaturities)){ ## never extrapolate, and do not attempt to compute theta if within 1 year if(startdate>newmaturities[i] || is.na(quotes[i])){ next }else{ newcs <- cs[cs$unadj.dates<=newmaturities[i],] upfront <- defaultleg(newcs, sc, recov, startdate) - (couponleg(newcs, sc, startdate, accruedondefault=TRUE)-acc)*0.05 r[i] <- quotes[i]-upfront+0.05 } } return( r ) } convertNA <- function(x){ if(is.na(x)){ return( "Null" ) }else{ return( x ) } } index <- 'HY' tenors <- c("3yr", "5yr", "7yr") recov <- 0.3 sqlstr <- paste("UPDATE index_quotes set duration=%s, theta=%s where date='%s' and index='%s'", "and series=%s and tenor='%s'") for(series in c(9, 10, 11, 13, 15, 17, 19, 21, 23)){ indexquotes <- get.indexquotes(index, series) maturities <- get.indexmaturity(index, series) maturities <- maturities[maturities$tenor %in% tenors,] indexquotes <- indexquotes[indexquotes$date<=maturities$maturity[3],] durations <- matrix(0, nrow(indexquotes), length(tenors)) thetas <- matrix(0, nrow(indexquotes), length(tenors)) maturity <- maturities[nrow(maturities), "maturity"] durandthetas <- foreach(i = 1:nrow(indexquotes), .combine='rbind') %dopar% { tradedate <- indexquotes[i, "date"] exportYC(tradedate) cs <- couponSchedule(IMMDate(tradedate, noadj=TRUE), maturity,"Q", "FIXED", 1, 0, tradedate, IMMDate(tradedate, "prev")) quotes <- data.frame(upfront=(100-as.numeric(indexquotes[i,-1]))/100, maturities) sc <- cdshazardrate(quotes, recov, tradedate, cs) c(fastduration(sc, cs, tradedate, maturities$maturity), fasttheta(sc, cs, recov, tradedate, maturities$maturity, quotes$upfront)) } df.durations <- data.frame(date=indexquotes$date, durandthetas[,1:3]) df.thetas <- data.frame(date=indexquotes$date, durandthetas[,4:6]) colnames(df.durations) <- c("date", tenors) colnames(df.thetas) <- c("date", tenors) for(i in 1:nrow(df.durations)){ for(tenor in tenors){ stmt <- sprintf(sqlstr, convertNA(df.durations[i,tenor]), convertNA(df.thetas[i, tenor]), df.durations[i,"date"], index, series, tenor) dbSendQuery(serenitasdb, stmt) } } ## nice plot, now I'm just showing off ggplot(df.durations, aes(x=date))+geom_line(aes(y=`3yr`, colour="3yr"))+ geom_line(aes(y=`5yr`, colour="5yr"))+ geom_line(aes(y=`7yr`, colour="7yr"))+ylab("duration")+labs(colour="tenor") ggsave(filename=paste0("HY", series, " durations.png")) ## plot thetas ggplot(df.thetas, aes(x=date))+geom_line(aes(y=`3yr`, colour="3yr"))+ geom_line(aes(y=`5yr`, colour="5yr"))+ geom_line(aes(y=`7yr`, colour="7yr"))+ylab("theta")+labs(colour="tenor") ggsave(filename=paste0("HY", series, " thetas.png")) }