library(doParallel) library(yaml) hostname <- system("hostname", intern=TRUE) if(hostname=="debian"){ registerDoParallel(8) }else{ registerDoParallel(4) } args <- commandArgs(trailingOnly=TRUE) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } if(length(args) >= 1){ workdate <- as.Date(args[1]) }else{ workdate <- Sys.Date() } if(length(args) >=2){ dealnames <- args[-1] reinvflags <- rep_len(TRUE, length(dealnames)) }else{ data <- read.table(file.path(root.dir, "scripts", "scenarios.txt"), colClasses=c("character", "logical")) dealnames <- data$V1 reinvflags <- data$V2 unlink(file.path(root.dir, "scripts", "scenarios.txt")) } source(file.path(root.dir, "code", "R", "intex_deal_functions.R")) source(file.path(root.dir, "code", "R", "index_definitions.R")) source(file.path(root.dir, "code", "R", "etdb.R")) source(file.path(root.dir, "code", "R", "cds_functions_generic.R")) source(file.path(root.dir, "code", "R", "cds_utils.R")) get.reinvassets <- function(dealname, workdate){ r <- list() sqlstr <- sprintf("select * from et_historicaldealinfo('%s', '%s') where ReinvFlag Is true", dealname, workdate) data <- dbGetQuery(dbCon, sqlstr) if(nrow(data)>0){ for(i in 1:nrow(data)){ r[[data$issuername[i]]] <- list(coupontype=data$fixedorfloat[i], liborfloor=data$liborfloor[i]) } } return( r ) } convert.reinvtoperct <- function(d){ newd <- list(REINV_TBA1=numeric(0), REINV_TBA2=numeric(0)) if(is.null(d["REINV_TBA2"]) || d["REINV_TBA1"] == d["REINV_TBA2"]){ if(d["REINV_TBA1"]=="Float"){ return(c(1,0)) }else{ return(c(0,1)) } } return(c(0.85, 0.15)) } compute.reinvprices <- function(df, forwards, cdrmonthly, recoverymonthly, spread, fixedrate, rollingmat, reinvlag){ ## reinvlag is in months ## rollingmat is in months floatbp <- c() fixedbp <- c() for(i in 0:(ncol(cdrmonthly)-1)){ index <- (i+1):min(i+rollingmat, ncol(cdrmonthly)) indexlagged <- index + reinvlag if(i==0){ currdf <- df[index] laggeddf <- df[indexlagged] }else{ currdf <- df[index]/df[i] laggeddf <- df[indexlagged]/df[i] } floatcoupon <- (forwards[index]+ spread)/12 fixedcoupon <- fixedrate/12 currbalance <- 1 - cdrmonthly[,index]/100/12 if(i < ncol(cdrmonthly)-1){ currbalance <- t(apply(currbalance, 1, cumprod)) recov <- -t(apply(cbind(1, currbalance), 1, diff)) * recoverymonthly[,index] fixedcl <- cbind(1,currbalance[,-length(index)])%*%(fixedcoupon*currdf) floatcl <- cbind(1,currbalance[,-length(index)])%*%(floatcoupon*currdf) pl <- currbalance[,dim(currbalance)[2]]*currdf[length(currdf)] + recov %*% laggeddf }else{ recov <- -t(apply(cbind(1, currbalance), 1, diff)) * recoverymonthly[,index] fixedcl <- as.numeric(currbalance*fixedcoupon*currdf) floatcl <- as.numeric(currbalance*floatcoupon*currdf) pl <- as.numeric(currbalance * currdf + recov * laggeddf) } floatbp <- cbind(floatbp, pl+floatcl) fixedbp <- cbind(fixedbp, pl+fixedcl) } return( list(loan=floatbp, bond=fixedbp) ) } calibration.date <- prevBusDay(workdate) calibration <- read.table(file.path(root.dir, "Scenarios", "Calibration", paste0("calibration-", calibration.date,".csv")), sep=",", header=T) Z <- calibration$Z w <- calibration$w Ngrid <- 201 MarkitData <- getMarkitIRData(calibration.date) futurequotes <- read.csv(file.path(root.dir, "data", "Yield Curves", sprintf("futures-%s.csv", calibration.date)), header=F) setEvaluationDate(as.Date(MarkitData$effectiveasof)) setCalendarContext("UnitedStates/GovernmentBond") L1m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1/12) L2m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1/6) L3m <- buildMarkitYC(MarkitData, futurequotes[,2]) L6m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1/2) L12m <- buildMarkitYC(MarkitData, futurequotes[,2], dt = 1) support <- seq(0, 1, length = Ngrid) recoverylag <- 90 ##days ## reinvestment parameters ## need to match parameters in build_portfolios.R reinvspread <- 0.04 reinvfixed <- 0.07 basecase.rollingmaturity <- 84 ##months reinvlag <- 3 ##months n.scenarios <- 100 recov.adj <- 1 for(j in seq_along(dealnames)){ load(file.path(root.dir, "Scenarios", paste("Portfolios", workdate, sep="_"), paste(dealnames[j], "RData", sep="."))) if(is.na(deal.data$"Reinv End Date")){ reinvflags[j] <- FALSE } dp <- A$DP pp <- A$PP dpmod <- MFupdate.probC(Z, w, deal.portfolio$beta, dp) ppmod <- MFupdate.probC(-Z, w, deal.portfolio$beta, pp) dist.joint <- MFlossdist.prepay.joint(w, Z, deal.portfolio$beta, dp, dpmod, pp, ppmod, deal.weights, 1-S, Ngrid) distDR <- dist.transform(dist.joint) ## compute E(R|D) R <- matrix(0, Ngrid, dim(distDR)[1]) for(t in 1:dim(distDR)[1]){ R[,t] <- sweep(distDR[t,,], 1, rowSums(distDR[t,,]), "/") %*% support R[1,t] <- 0 if(t >= 2){ R[,t] <- pmax(R[,t], R[,t-1]) } } ## compute scenariosd scenariosd <- matrix(0, n.scenarios, dim(distDR)[1]) scenariosr <- matrix(0, n.scenarios, dim(distDR)[1]) percentiles <- seq(0, 1, 1/n.scenarios) for(t in 1:dim(distDR)[1]){ D <- rowSums(distDR[t,,]) Dfun <- splinefun(c(0, cumsum(D)), c(0, support), "monoH.FC") Rfun <- approxfun(support, R[,t], rule=2) for(i in 1:n.scenarios){ ## this is roughtly E(D|D is in ith percentile) ## using trapezoidal approximation scenariosd[i,t] <- 0.5 * (Dfun((i-1)*0.01)+Dfun(i*0.01)) if(t>=2 && scenariosd[i,t] < scenariosd[i,t-1]){ scenariosd[i,t] <- scenariosd[i,t-1] } scenariosr[i,t] <- Rfun(scenariosd[i,t]) if(t>=2 && scenariosr[i,t] < scenariosr[i,t-1]){ scenariosr[i,t] <- scenariosr[i,t-1] } } } ## we need to adjust the recovery because intex has some embedded amortization assumptions ## that we can't turn off (multiply by recov.adj) intexrecov <- matrix(0, n.scenarios, dim(distDR)[1]) for(i in 1:dim(distDR)[1]){ if(i==1){ intexrecov[,i] <- recov.adj * (scenariosr[,i]/scenariosd[,1]) }else{ intexrecov[,i] <- recov.adj * (scenariosr[,i]-scenariosr[,i-1])/(scenariosd[,i]-scenariosd[,i-1]) } } cdr <- cdrfromscenarios(scenariosd, deal.dates) ## linear approximation for monthly scenarios deal.data <- getdealdata(dealnames[j]) deal.datesmonthly <- getdealschedule(deal.data, "1 month") deal.datesmonthlylagged <- getdealschedule(deal.data, "1 month", workdate, 92) cdrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) recoverymonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) scenariosrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) scenariosdmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) for(i in 1:n.scenarios){ cdrmonthly[i,] <- approx(deal.dates, cdr[i,], deal.datesmonthly, rule=2)$y recoverymonthly[i,] <- approx(deal.dates, intexrecov[i,], deal.datesmonthly, rule=2)$y scenariosrmonthly[i,] <- approx(deal.dates, scenariosr[i,], deal.datesmonthly, rule=2)$y scenariosdmonthly[i,] <- approx(deal.dates, scenariosd[i,], deal.datesmonthly, rule=2)$y } recoverymonthly <- pmin(recoverymonthly,1) recoverymonthly[!is.finite(recoverymonthly)] <- 100 ## compute reinvestment price if(!is.na(deal.data$"Reinv End Date") && deal.data$"Reinv End Date" <= workdate){ ## we cap rolling maturity at the current weighted average maturity of the portfolio rollingmaturity <- (crossprod(sapply(deal.portfolio$SC, creditcurve.maturity), deal.portfolio$notional)/sum(deal.portfolio$notional) - as.numeric(workdate))/365*12 }else{ rollingmaturity <- basecase.rollingmaturity } ## DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, deal.datesmonthlylagged)) ## df <- DC$discounts ## forwards <- DC$forwards cdrmonthly.dt <- data.table(date=deal.datesmonthly, t(cdrmonthly), key="date") recoverymonthly.dt <- data.table(date=deal.datesmonthly, t(recoverymonthly), key="date") reinvassets <- get.reinvassets(dealnames[j], workdate) reinvprices <- list() if(reinvflags[j] && length(reinvassets)>0){ for(assetname in names(reinvassets)){ asset <- reinvassets[[assetname]] if(asset$coupontype=="FLOAT") { coupon <- reinvspread }else{ coupon <- reinvfixed } ##reinvest tweak coupon <- coupon-0.01 reinvprices[[assetname]] <- foreach(date = iter(deal.datesmonthly), .combine=c) %dopar% { 100 * forwardportfolioprice2(cdrmonthly.dt, recoverymonthly.dt, date, min(date+rollingmaturity*30, deal.data$maturity), asset$coupontype, coupon, asset$liborfloor/100) } } } ## reinvprices <- compute.reinvprices(df, forwards, cdrmonthly, recoverymonthly, reinvspread, ## reinvfixed, rollingmaturity, reinvlag) ## loanprices <- apply(reinvprices.tweak$loan, 2, mean) ## bondprices <- apply(reinvprices.tweak$bond, 2, mean) ## reinvassets <- convert.reinvtoperct(get.reinvassets(dealnames[j])) ## ## all amounts are in units of current collateral balance ## reinvdollar <- matrix(0, n.scenarios, length(deal.datesmonthly)) ## maturingbalance <- matrix(0, n.scenarios, length(deal.datesmonthly)) ## reinvdollar[,1] <- scenariosrmonthly[,1] + deal.data$"Principal Bal"/deal.data$"Curr Collat Bal" ## loanprices <- crossprod(reinvdollar[,1], reinvprices$loan[,1])/sum(reinvdollar[,1]) ## bondprices <- c(crossprod(reinvdollar[,1], reinvprices$bond[,1])/sum(reinvdollar[,1])) ## maturingbalance[,min(1+rollingmaturity, length(deal.datesmonthly))] <- ## reinvdollar[,1]/crossprod(reinvassets, c(loanprices[1], bondprices[1])) ## reinvbalance <- matrix(0, n.scenarios, length(deal.datesmonthly)) ## for(t in 2:dim(cdrmonthly)[2]){ ## reinvdollar <- scenariosrmonthly[,t]-scenariosrmonthly[,t-1] + ## reinvbalance * cdrmonthly[,t]/100 * recoverymonthly[,t] * ## yearFrac(deal.datesmonthly[t-1], deal.datesmonthly[t]) ## if(t==(dim(cdrmonthly)[2]-1)){ ## reinvbalance[,t] <- maturingbalance[,length(deal.datesmonthly)] ## }else if(t==dim(cdrmonthly)[2]){ ## reinvbalance[,t] <- 0 ## }else{ ## reinvbalance[,t] <- rowSums(maturingbalance[,(t+1):length(deal.datesmonthly)]) ## } ## reinvdollar[,t] <- scenariosrmonthly[,t] - scenariosrmonthly[,t-1] + ## reinvbalance[,t] * cdrmonthly[,t]/100 * recoverymonthly[,t] * ## yearFrac(deal.datesmonthly[t-1], deal.datesmonthly[t]) ## loanprices <- c(loanprices, crossprod(reinvdollar[,t], reinvprices$loan[,t])/sum(reinvdollar[,t])) ## bondprices <- c(bondprices, crossprod(reinvdollar[,t], reinvprices$bond[,t])/sum(reinvdollar[,t])) ## maturingbalance[,min(t+rollingmaturity, length(deal.datesmonthly))] <- ## reinvdollar[,t]/crossprod(reinvassets, c(loanprices[t], bondprices[t])) ## maturingbalance[,min(t+rollingmaturity, length(deal.datesmonthly))] <- ## maturingbalance[,min(t+rollingmaturity, length(deal.datesmonthly))] + ## reinvdollar[,t]/loanprices[t] ## } save.dir <- file.path(root.dir, "Scenarios", paste("Intex curves", workdate, sep="_"), "csv") if(!file.exists(save.dir)){ dir.create(save.dir, recursive = T) } write.table(cdrmonthly, file= file.path(save.dir, paste0(dealnames[j],"-cdr.csv")), row.names=F, col.names=F, sep=",") write.table(100 * recoverymonthly, file=file.path(save.dir, paste0(dealnames[j],"-recovery.csv")), row.names=F, col.names=F, sep=",", na="NaN") write.table(reinvprices, file = file.path(save.dir, paste0(dealnames[j], "-reinvprices.csv")), row.names=F, col.names=T, sep=",") configfile <- file.path(save.dir, paste0(dealnames[j], ".config")) config <- list(rollingmat = as.integer(rollingmaturity), reinvflag = reinvflags[j]) cat(as.yaml(config), file = configfile) save(scenariosd, scenariosr, dist.joint, file=file.path(save.dir, paste0(dealnames[j], ".RData")), compress="xz") cat("generated scenarios for:", dealnames[j], "\n") }