args <- commandArgs(trailingOnly=TRUE) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } if(length(args) >= 1){ workdate <- as.Date(args[1]) }else{ workdate <- Sys.Date() } if(length(args) >=2){ dealnames <- args[2:length(args)] }else{ dealnames <- read.table(file.path(root.dir, "scripts", "scenarios.txt"))$V1 unlink(file.path(root.dir, "scripts", "scenarios.txt")) } source(file.path(root.dir, "code", "R", "intex_deal_functions.R")) source(file.path(root.dir, "code", "R", "index_definitions.R")) prevBusDay <- function(workdate = Sys.Date()){ i <- 1 while(!isBusinessDay(calendar = "UnitedStates/GovernmentBond", workdate - i)){ i <- i+1 } return( workdate - i ) } compute.reinvprices <- function(df, forwards, cdrmonthly, recoverymonthly, spread, fixedrate, rollingmat, reinvlag){ ## reinvlag is in months ## rollingmat is in months floatbp <- c() fixedbp <- c() for(i in 0:(ncol(cdrmonthly)-1)){ index <- (i+1):min(i+rollingmat, ncol(cdrmonthly)) indexlagged <- index + reinvlag if(i==0){ currdf <- df[index] laggeddf <- df[indexlagged] }else{ currdf <- df[index]/df[i] laggeddf <- df[indexlagged]/df[i] } floatcoupon <- (forwards[index]+ spread)/12 fixedcoupon <- fixedrate/12 currbalance <- 1 - cdrmonthly[,index]/100/12 if(i < ncol(cdrmonthly)-1){ currbalance <- t(apply(currbalance, 1, cumprod)) recov <- -t(apply(cbind(1, currbalance), 1, diff)) * recoverymonthly[,index] fixedcl <- cbind(1,currbalance[,-length(index)])%*%(fixedcoupon*currdf) floatcl <- cbind(1,currbalance[,-length(index)])%*%(floatcoupon*currdf) pl <- currbalance[,dim(currbalance)[2]]*currdf[length(currdf)] + recov %*% laggeddf }else{ recov <- -t(apply(cbind(1, currbalance), 1, diff)) * recoverymonthly[,index] fixedcl <- as.numeric(currbalance*fixedcoupon*currdf) floatcl <- as.numeric(currbalance*floatcoupon*currdf) pl <- as.numeric(currbalance * currdf + recov * laggeddf) } floatbp <- cbind(floatbp, pl+floatcl) fixedbp <- cbind(fixedbp, pl+fixedcl) } return( list(loan=floatbp, bond=fixedbp) ) } calibration.date <- prevBusDay(workdate) calibration <- read.table(file.path(root.dir, "Scenarios", "Calibration", paste0("calibration-", calibration.date,".csv")), sep=",", header=T) Z <- calibration$Z w <- calibration$w Ngrid <- 201 ## dealnames <- list.files(file.path(root.dir, "Scenarios", paste0("Portfolios_", calibration.date)), ## pattern="*.RData") ## dealnames <- sapply(strsplit(dealnames, "\\."), function(x)x[1]) MarkitData <- getMarkitIRData(calibration.date) L1m <- buildMarkitYC(MarkitData, dt = 1/12) L2m <- buildMarkitYC(MarkitData, dt = 1/6) L3m <- buildMarkitYC(MarkitData) L6m <- buildMarkitYC(MarkitData, dt = 1/2) L12m <- buildMarkitYC(MarkitData, dt = 1) setEvaluationDate(as.Date(MarkitData$effectiveasof)) support <- seq(0, 1, length = Ngrid) ## 3 months recoverylag <- 90 for(deal.name in dealnames){ load(file.path(root.dir, "Scenarios", paste("Portfolios", workdate, sep="_"), paste(deal.name, "RData", sep="."))) dp <- A$DP pp <- A$PP dpmod <- MFupdate.probC(Z, w, deal.portfolio$beta, dp) ppmod <- MFupdate.probC(-Z, w, deal.portfolio$beta, pp) dist.joint <- MFlossdist.prepay.joint(w, Z, deal.portfolio$beta, dp, dpmod, pp, ppmod, deal.weights, 1-S, Ngrid) distDR <- dist.transform(dist.joint) ## compute E(R|D) R <- matrix(0, Ngrid, dim(distDR)[1]) for(t in 1:dim(distDR)[1]){ R[,t] <- sweep(distDR[t,,], 1, rowSums(distDR[t,,]), "/") %*% support R[1,t] <- 0 if(t >= 2){ R[,t] <- pmax(R[,t], R[,t-1]) } } n.scenarios <- 100 ## compute scenariosd scenariosd <- matrix(0, n.scenarios, dim(distDR)[1]) scenariosr <- matrix(0, n.scenarios, dim(distDR)[1]) percentiles <- seq(0, 1, 1/n.scenarios) for(t in 1:dim(distDR)[1]){ D <- rowSums(distDR[t,,]) Dfun <- splinefun(c(0, cumsum(D)), c(0, support), "monoH.FC") Rfun <- approxfun(support, R[,t], rule=2) for(i in 1:n.scenarios){ ## this is roughtly E(D|D is in ith percentile) ## using trapezoidal approximation scenariosd[i,t] <- 0.5 * (Dfun((i-1)*0.01)+Dfun(i*0.01)) if(t>=2 && scenariosd[i,t] < scenariosd[i,t-1]){ scenariosd[i,t] <- scenariosd[i,t-1] } scenariosr[i,t] <- Rfun(scenariosd[i,t]) if(t>=2 && scenariosr[i,t] < scenariosr[i,t-1]){ scenariosr[i,t] <- scenariosr[i,t-1] } } } recov.adj <- 0.925 ## need to adjust the recover because intex has some embedded amortization assumptions ## that we can't turn off scenariosr <- scenariosr * recov.adj intexrecov <- matrix(0, n.scenarios, dim(distDR)[1]) for(i in 1:dim(distDR)[1]){ if(i==1){ intexrecov[,i] <- (scenariosr[,i]/scenariosd[,1]) }else{ intexrecov[,i] <- (scenariosr[,i]-scenariosr[,i-1])/(scenariosd[,i]-scenariosd[,i-1]) } } cdr <- cdrfromscenarios(scenariosd, deal.dates) ## linear approximation for monthly scenarios deal.data <- getdealdata(deal.name) deal.datesmonthly <- getdealschedule(deal.data, "1 month") deal.datesmonthlylagged <- getdealschedule(deal.data, "1 month", workdate, 92) cdrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) recoverymonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) scenariosrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) for(i in 1:n.scenarios){ cdrmonthly[i,] <- approx(deal.dates, cdr[i,], deal.datesmonthly, rule=2)$y recoverymonthly[i,] <- approx(deal.dates, intexrecov[i,], deal.datesmonthly, rule=2)$y scenariosrmonthly[i,] <- approx(deal.dates, intexrecov[i,], deal.datesmonthly, rule=2)$y } ## compute reinvestment price DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, deal.datesmonthlylagged)) df <- DC$discounts forwards <- DC$forwards reinvprices <- compute.reinvprices(df, forwards, cdrmonthly, recoverymonthly, 0.025, 0.07, 84, 3) ## prev <- scenariosrmonthly[,1] ## loanprices <- c() ## bondprices <- c() ## for(t in 2:dim(cdrmonthly)[2]){ ## w <- scenariosrmonthly[,t]-scenariosrmonthly[,t-1]+ ## prev*cdrmonthly[,t]/100 * intexrecov[,t] + yearFrac(deal.datesmonthly[t-1], deal.datesmonthly[t]) ## prev <- w ## loanprices <- c(loanprices, crossprod(w, reinvprices$loan)/sum(w)) ## bondprices <- c(bondprices, crossprod(w, reinvprices$bond)/sum(w)) ## } ## browser() save.dir <- file.path(root.dir, "Scenarios", paste("Intex curves", workdate, sep="_"), "csv") if(!file.exists(save.dir)){ dir.create(save.dir, recursive = T) } recoverymonthly <- pmin(recoverymonthly,1) write.table(cdrmonthly, file= file.path(save.dir, paste0(deal.name,"-cdr.csv")), row.names=F, col.names=F, sep=",") write.table(100 * recoverymonthly, file=file.path(save.dir, paste0(deal.name,"-recovery.csv")), row.names=F, col.names=F, sep=",") write.table(100 * reinvprices$loan, file = file.path(save.dir, paste0(deal.name, "-floatreinvprices.csv")), row.names=F, col.names=F, sep=",") write.table(100 * reinvprices$bond, file = file.path(save.dir, paste0(deal.name, "-fixedreinvprices.csv")), row.names=F, col.names=F, sep=",") save(scenariosd, scenariosr, dist.joint, file=file.path(save.dir, paste0(deal.name, ".RData")), compress="xz") cat("generated scenarios for:", deal.name, "\n") }