library(doParallel, quiet = T, warn.conflicts = F) library(yaml) hostname <- system("hostname", intern=TRUE) if(hostname=="debian"){ registerDoParallel(8) }else{ registerDoParallel(4) } args <- commandArgs(trailingOnly=TRUE) stopifnot((root.dir <- Sys.getenv("SERENITAS_BASE_DIR")) != "") stopifnot((config.dir <- Sys.getenv("SERENITAS_CONFIG_DIR")) != "") source("intex_deal_functions.R") source("yieldcurve.R") source("serenitasdb.R") source("tranche_functions.R") if(interactive()) { tradedate <- as.Date("2020-04-06") dealnames <- c("acasl152") reinvflags <- c(TRUE) }else{ tradedate <- as.Date(args[1]) if(length(args) >=2){ argslist <- strsplit(args[-1], ",") dealnames <- unlist(lapply(argslist, function(x)x[1])) reinvflags <- as.logical(unlist(lapply(argslist, function(x)x[2]))) } } calibration.date <- addBusDay(tradedate, -1) settledate <- addBusDay(tradedate, 3) calibration <- read.table(file.path(root.dir, "Scenarios", "Calibration", paste0("calibration-", calibration.date,".csv")), sep=",", header=T) Z <- calibration$Z w <- calibration$w exportYC(calibration.date) Ngrid <- 201 support <- seq(0, 1, length = Ngrid) n.scenarios <- 100 recov.adj <- 1 params <- yaml.load_file(file.path(config.dir, "params.yml"), handlers = list(expr = function(x) eval(parse(text = x)))) for(j in seq_along(dealnames)){ load(file.path(root.dir, "Scenarios", paste("Portfolios", tradedate, sep="_"), paste(dealnames[j], "RData", sep="."))) if(is.na(deal.data$reinv_end_date)){ reinvflags[j] <- FALSE } dp <- A$DP pp <- A$PP dpmod <- MFupdate.prob(Z, w, deal.portfolio$beta, dp) ppmod <- MFupdate.prob(-Z, w, deal.portfolio$beta, pp) dist.joint <- MFlossdist.prepay.joint(w, Z, deal.portfolio$beta, dp, dpmod, pp, ppmod, deal.weights, 1-S, Ngrid) dist.joint <- pmax(dist.joint, 0) distDR <- dist.transform(dist.joint) ## compute E(R|D) R <- matrix(0, Ngrid, dim(distDR)[1]) for(t in 1:dim(distDR)[1]){ R[,t] <- sweep(distDR[t,,], 1, rowSums(distDR[t,,]), "/") %*% support R[1,t] <- 0 if(t >= 2){ R[,t] <- pmax(R[,t], R[,t-1]) } } ## compute scenariosd scenariosd <- matrix(0, n.scenarios, dim(distDR)[1]) scenariosr <- matrix(0, n.scenarios, dim(distDR)[1]) percentiles <- seq(0, 1, 1/n.scenarios) for(t in 1:dim(distDR)[1]){ D <- rowSums(distDR[t,,]) Dfun <- splinefun(c(0, cumsum(D)), c(0, support), "hyman") Rfun <- approxfun(support, R[,t], rule=2) for(i in 1:n.scenarios){ ## this is roughly E(D|D is in ith percentile) ## using trapezoidal approximation if(i==1){ scenariosd[i,t] <- 0.5* Dfun(0.01) }else{ scenariosd[i,t] <- 0.5 * (Dfun((i-1)*0.01)+Dfun(i*0.01)) } if(t>=2 && scenariosd[i,t] < scenariosd[i,t-1]){ scenariosd[i,t] <- scenariosd[i,t-1] } scenariosr[i,t] <- Rfun(scenariosd[i,t]) if(t>=2 && scenariosr[i,t] < scenariosr[i,t-1]){ scenariosr[i,t] <- scenariosr[i,t-1] } } } ## we need to adjust the recovery because intex has some embedded amortization assumptions ## that we can't turn off (multiply by recov.adj) intexrecov <- matrix(0, n.scenarios, dim(distDR)[1]) for(i in 1:dim(distDR)[1]){ if(i==1){ intexrecov[,i] <- recov.adj * (scenariosr[,i]/scenariosd[,1]) }else{ intexrecov[,i] <- recov.adj * (scenariosr[,i] - scenariosr[,i-1])/(scenariosd[,i] - scenariosd[,i-1]) } } deal.dates <- getdealschedule(deal.data, "Quarterly") deal.dates <- deal.dates[deal.dates>=settledate] cdr <- cdrfromscenarios(scenariosd, deal.dates, tradedate) ## linear approximation for monthly scenarios deal.data <- getdealdata(dealnames[j], tradedate) deal.datesmonthly <- getdealschedule(deal.data, "Monthly") deal.datesmonthly <- deal.datesmonthly[deal.datesmonthly>=settledate] cdrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) recoverymonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) scenariosrmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) scenariosdmonthly <- matrix(0, n.scenarios, length(deal.datesmonthly)) for(i in 1:n.scenarios){ cdrmonthly[i,] <- approx(deal.dates, cdr[i,], deal.datesmonthly, rule=2)$y recoverymonthly[i,] <- approx(deal.dates, intexrecov[i,], deal.datesmonthly, rule=2)$y scenariosrmonthly[i,] <- approx(deal.dates, scenariosr[i,], deal.datesmonthly, rule=2)$y scenariosdmonthly[i,] <- approx(deal.dates, scenariosd[i,], deal.datesmonthly, rule=2)$y } recoverymonthly[90:100,][which(recoverymonthly[90:100,]>1)] <- 0 recoverymonthly <- pmin(recoverymonthly, 1) recoverymonthly[!is.finite(recoverymonthly)] <- 100 if(!is.na(deal.data$reinv_end_date) && deal.data$reinv_end_date <= tradedate){ ## we cap rolling maturity at the current weighted average maturity of the portfolio rollingmaturity <- (crossprod(sapply(deal.portfolio$SC, creditcurve.maturity), deal.portfolio$notional)/sum(deal.portfolio$notional) - as.numeric(tradedate)) }else{ rollingmaturity <- params$rollingmaturity } ## compute reinvestment price cdrmonthly.dt <- data.table(date=deal.datesmonthly, t(cdrmonthly), key="date") recoverymonthly.dt <- data.table(date=deal.datesmonthly, t(recoverymonthly), key="date") if(reinvflags[j]){ reinvprices <- compute.reinvprices(dealnames[j], cdrmonthly.dt, recoverymonthly.dt, params, rollingmaturity, tradedate) }else{ reinvprices <- list() } save.dir <- file.path(root.dir, "Scenarios", paste("Intex curves", tradedate, sep="_"), "csv") if(!file.exists(save.dir)){ dir.create(save.dir, recursive = T) } write.table(cdrmonthly, file= file.path(save.dir, paste0(dealnames[j],"-cdr.csv")), row.names=F, col.names=F, sep=",") write.table(100 * recoverymonthly, file=file.path(save.dir, paste0(dealnames[j],"-recovery.csv")), row.names=F, col.names=F, sep=",", na="NaN") write.table(reinvprices, file = file.path(save.dir, paste0(dealnames[j], "-reinvprices.csv")), row.names=F, col.names=T, sep=",") configfile <- file.path(save.dir, paste0(dealnames[j], ".config")) config <- list(rollingmat = as.integer(rollingmaturity/365*12), reinvflag = reinvflags[j]) cat(as.yaml(config), file = configfile) save(scenariosd, scenariosr, dist.joint, file=file.path(save.dir, paste0(dealnames[j], ".RData")), compress="xz", version=2) cat("generated scenarios for:", dealnames[j], "\n") }