library(RQuantLib) library(statmod) root = "//WDSENTINEL/share/CorpCDOs/" source(file.path(root, "R", "yieldCurve.R")) source(file.path(root, "R", "cds_functions_generic.R")) source(file.path(root, "R", "etdb.R")) source(file.path(root, "R", "tranche_functions.R")) load(file.path(root, "R", "bloomberg_data.RData")) cdorating <- function(cusip){ return( sub("[0-9]","", dataMtge[dataMtge$CUSIP %in% cusip,]$RTG_MDY_INITIAL )) } getcollateral <- function(dealname, date=Sys.Date()){ sqlstring <- sprintf("select * from et_aggdealinfo_historical('%s', '%s')", dealname, date) collatdata <- dbGetQuery(dbCon, sqlstring) return(collatdata) } getdealdata <- function(dealnames){ sqlstring <- sprintf("select * from latest_clo_universe where dealname in ('%s')", paste(dealnames, collapse="','")) return( dbGetQuery(dbCon, sqlstring) ) } recovery <- function(collateral) { ## return assumed recovery based on assumptions from recovery.assumptions if(!is.na(collateral$secondlien) && collateral$secondlien){ collateral$assettype <- "SecondLien" } recovery <- with(global.params, as.numeric(recovery.assumptions[collateral$assettype])) if( !is.na(collateral$covlite) && collateral$covlite) { recovery <- recovery - global.params$recovery.assumptions$Adj_Covlite } if( !is.na(collateral$iscdo) && collateral$iscdo ){ recovery <- 0 } ## price is too low need to lower the assumed recovery if(!is.na(collateral$price) && recovery > collateral$price/100 - 0.1){ recovery <- max(collateral$price/100-0.2, 0) } return(recovery) } dealnamefromcusip <- function(cusips){ ## wrapper around the sql procedure, not the fastest probably r <- NULL for(i in 1:length(cusips)){ sqlstr <- sprintf("select * from dealname_from_cusip('%s')", cusips[i]) r <- c(r, as.character(dbGetQuery(dbCon, sqlstr))) } return( r ) } cusipsfromdealnames <- function(dealnames){ unlist(strsplit(getdealdata(dealnames)$"Deal Cusip List", ",")) } fithazardrate.fast <- function(collateral, eps=1e-6){ lambda <- 0.05 cs <- couponSchedule(collateral$nextpaydate, collateral$maturity, collateral$frequency, collateral$fixedorfloat, collateral$grosscoupon * 0.01, collateral$spread*0.01) R <- recovery(collateral) while(abs(bondprice(lambda, cs, R) * 100 - collateral$price) > eps){ lambda <- lambda - (bondprice(lambda, cs, R) - 0.01*collateral$price)/dbondprice(lambda, cs, R) } return( lambda ) } vanillabondprice <- function(h, collateral, prepay=TRUE) { R <- recovery(collateral) cs <- couponSchedule(collateral$nextpaydate, collateral$maturity, collateral$frequency, collateral$fixedorfloat, collateral$grosscoupon*0.01, collateral$spread*0.01) if(prepay){ dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)), prepayrates=rep(k(h), length(cs$dates))) }else{ dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)), prepayrates=numeric(0)) } return( bondprice(cs, dpc, R) ) } dvanillabondprice <- function(hazardrate, collateral) { R <- recovery(collateral) cs <- couponSchedule(collateral$nextpaydate, collateral$maturity, collateral$frequency, collateral$fixedorfloat, collateral$grosscoupon*0.01, collateral$spread*0.01) return( bondprice(hazardrate, cs, R) ) } fithazardrate <- function(collateral){ R <- recovery(collateral) cs <- couponSchedule(collateral$nextpaydate, collateral$maturity, collateral$frequency, collateral$fixedorfloat, collateral$grosscoupon*0.01, collateral$spread*0.01) f <- function(lambda){ u <- bondprice(lambda, cs, R ) return( (u * 100-collateral$price)^2 ) } return( optimize(f, c(0,1), tol=1e-6)$minimum ) } maturity <- function(creditcurve){ if(class(creditcurve)=="creditcurve"){ dates <- creditcurve@curve@dates if(length(dates)){ return( dates[length(dates)] ) }else{ return( creditcurve@startdate ) } }else{ stop("not of class creditcurve") } } stackcurve <- function(SC, line.item, global.params, startdate){ newdates <- seq(startdate, line.item$maturity, by="3 months") if(line.item$assettype=="Loan"){ hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultloanhazardrate kvec <- global.params$alpha * exp(-global.params$beta * hvec) }else if(line.item$assettype=="Bond" || line.item$iscdo){ hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultbondhazardrate kvec <- rep(0, length(hvec)) } SC@curve@hazardrates <- c(SC@curve@hazardrates, hvec) SC@curve@prepayrates <- c(SC@curve@prepayrates, kvec) SC@curve@dates <- c(SC@curve@dates, newdates[-1]) return(SC) } buildSC.matured <- function(SC, line.item, reinvdate, dealmaturity, global.params, startdate){ if(startdate<=reinvdate){ #reinvest line.item$maturity <- min(dealmaturity, startdate + global.params$rollingmaturity) SC <- stackcurve(SC, line.item, global.params, startdate) }else{ #no reinvestment SC@curve@dates <- startdate SC@curve@hazardrates <- 0 SC@curveprepayrates <- 0 } return( SC ) } buildSC <- function(line.item, reinvdate, dealmaturity, global.params, startdate){ ## cat(line.item$issuername, "\n") if(!is.na(line.item$iscdo) && line.item$iscdo && is.na(line.item$price)){ ##we have prices for some cdos e.g. 210795PS3 orig.moody <- cdorating(line.item$cusip) if(length(orig.moody)==0){ orig.moody <- "NR" } line.item$price <- as.numeric(global.params$cdoprices[orig.moody]) } ##build survival curve SC <- new("creditcurve", recovery=recovery(line.item), startdate=startdate, issuer=line.item$issuername) SC@curve <- new("defaultprepaycurve", dates=as.Date(character(0))) ## defaulted asset if(!is.na(line.item$defaultedflag) && line.item$defaultedflag){ if(!is.na(line.item$price)){ line.item$currentbalance <- line.item$currentbalance * line.item$price/100 }else{ line.item$currentbalance <- line.item$currentbalance * recovery(line.item) } SC@startdate <- startdate + global.params$defaultedlag line.item$maturity <- min(dealmaturity, SC@startdate + global.params$rollingmaturity) ## automatic reinvest SC<- stackcurve(SC, line.item, global.params, SC@startdate) }else if(line.item$maturity<=startdate){#matured asset SC <- buildSC.matured(SC, line.item, reinvdate, dealmaturity, global.params, startdate) }else if(is.na(line.item$price)){ #missing price SC <- stackcurve(SC, line.item, global.params, SC@startdate) }else{ #normal case if(line.item$assettype=="Bond"){ #no prepay rate alpha <- 0 }else{ alpha <- global.params$alpha } try <- bondhazardrate.shaped(line.item, global.params$shape, recovery(line.item), alpha) if(is.null(try)){ SC <- stackcurve(SC, line.item, global.params, SC@startdate) }else{ SC@curve <- try } } if(maturity(SC) <= reinvdate){ #we reinvest newstartdate <- line.item$maturity line.item$maturity <- min(dealmaturity, newstartdate + global.params$rollingmaturity) SC <- stackcurve(SC, line.item, global.params, newstartdate) } return( list(SC=SC, notional=line.item$currentbalance) ) } buildSC.portfolio <- function(dealname, global.params, startdate=today()) { dealdata <- getdealdata(dealname) collatdata <- getcollateral(dealname) notionalvec <- c() SCvec <- c() betavec <- c() for(i in 1:nrow(collatdata)){ line.item <- collatdata[i,] if( is.na(line.item$maturity) ){ stop("empty maturity") } ##most likely equity, doesn't impact the risk anyway if(line.item$currentbalance < 1){ next } temp <- buildSC(line.item, dealdata$"Reinv End Date", dealdata$maturity, global.params, startdate) notionalvec <- c(notionalvec, temp$notional) SCvec <- c(SCvec, temp$SC) betavec <- c(betavec, if(!is.na(line.item$iscdo) && line.item$iscdo) 1 else global.params$defaultcorr) } return( list(notional=notionalvec, SC=SCvec, beta=betavec) ) } cdrfromscenarios <- function(scenarios, dates){ ## compute the forward cdr rates to pass to intex ## so that we match the default curves in scenarios cdr <- matrix(0, nrow(scenarios), ncol(scenarios)) for(i in 1:nrow(scenarios)){ cdr[i,] <- 100*(1-exp(diff(c(0, log(1-scenarios[i,])))))/diff(c(0, yearFrac(today(), dates))) } return( cdr ) } recoveryfromscenarios <- function(scenariosd, scenariosr){ ## compute the forward recovery rate based on the term ## structure of recovery scenarios ## we run into trouble for very stressed scenarios ## this code should cap the scenarios at 0 it this happens intexrecov <- matrix(0, n.scenarios, ncol(scenariosr)) for(i in 1:n.scenarios){ current <- 1 intexrecov[i,1] <- scenariosr[i,1] for(t in 2:ncol(scenariosr)){ w <- scenariosd[i,current]/scenariosd[i,t] if(scenariosr[i,t]-w*scenariosr[i,current]>=0){ intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w) current <- current+1 }else{ intexrecov[i,t] <- 0 } } } return(intexrecov) }