library(RPostgreSQL) library(RQuantLib) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } source(file.path(root.dir, "code", "R", "etdb.R")) source(file.path(root.dir, "code", "R", "yieldcurve.R")) source(file.path(root.dir, "code", "R", "utils.R")) source(file.path(root.dir, "code", "R", "cds_utils.R")) workdate <- as.Date("2013-01-24") MarkitData <- getMarkitIRData(as.Date(workdate)) L1m <- buildMarkitYC(MarkitData, dt = 1/12) L2m <- buildMarkitYC(MarkitData, dt = 1/6) L3m <- buildMarkitYC(MarkitData) L6m <- buildMarkitYC(MarkitData, dt = 1/2) L12m <- buildMarkitYC(MarkitData, dt = 1) setEvaluationDate(as.Date(MarkitData$effectiveasof)) sanitize.column <- function(vec){ vec <- gsub(",", "", vec) index <- grep("\\(", vec) for(l in index){ vec[l] <- -as.numeric(substr(vec[l], 2, nchar(vec[l])-1)) } return( as.numeric(vec) ) } fields <- c("Cashflow", "Principal", "Interest") tranches <- c("COLLAT_REINVEST", "COLLAT_INITIAL") n.scenarios <- 100 cfdata <- list() dealnames <- list.files(file.path(root.dir, "Scenarios", paste0("Prices_", workdate)), "*COLLAT_INITIAL-CF-Scen1*") dealnames <- sapply(strsplit(dealnames, "-"), function(x) x[1]) dealnames <- tolower(unique(dealnames)) flag <- FALSE for(dealname in dealnames){ cfdata[[dealname]] <- list() r <- matrix(0, n.scenarios, 3) colnames(r) <- fields sqlstring <- sprintf("select marketvalue from latest_deal_model_numbers where dealname='%s'", dealname) mv <- dbGetQuery(dbCon, sqlstring)$marketvalue sqlstring <- sprintf("select \"Curr Collat Bal\" from latest_clo_universe where dealname='%s'", dealname) currbal <- dbGetQuery(dbCon, sqlstring)$"Curr Collat Bal" cfdata[[dealname]]$mv <- mv cfdata[[dealname]]$currbal <- currbal for(tranche in tranches){ for(i in 1:n.scenarios){ filename <- paste0(paste(toupper(dealname), tranche, "CF", paste0("Scen", i), sep="-"), ".txt") data <- read.table(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename), sep="\t", header=T) data <- data[-(1:2),1:4] data$Date <- as.Date(data$Date, "%b %d, %Y") if(any(is.na(data$Date))){ sprintf("file: %s is messed up", filename) flag <- TRUE break } data <- data[data$Date >= Sys.Date(),] DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, data$Date)) pv <- c() for(field in fields){ data[,field] <- sanitize.column(data[,field]) pv <- c(pv, crossprod(DC$discounts, data[,field])) } r[i,] <- pv } if(flag){ cfdata[[dealname]] <- NULL flag <- FALSE break }else{ cfdata[[dealname]][[tranche]]<- r } } } r <- c() for(dealname in dealnames){ r <- rbind(r, c(cfdata[[dealname]]$mv, cfdata[[dealname]]$currbal, apply(cfdata[[dealname]]$COLLAT_REINVEST, 2, mean)[1], apply(cfdata[[dealname]]$COLLAT_INITIAL, 2, mean)[1])) } colnames(r) <- c("mv", "currbal", "Reinvest", "Initial") rownames(r) <- dealnames flag <- FALSE cusipdata <- list() for(cusip in cusips){ r <- rep(0, n.scenarios) sqlstring <- sprintf("select curr_balance from cusip_universe where cusip = '%s'", cusip) curr_balance <- dbGetQuery(dbCon, sqlstring)$curr_balance cusipdata[[cusip]]$currbal <- curr_balance for(i in 1:n.scenarios){ filename <- sprintf("%s-CF-Scen%s.txt", cusip, i) data <- read.table(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename), sep = "\t", header=T) data <- data[-(1:2), 1:4] data$Date <- as.Date(data$Date, "%b %d, %Y") if(any(is.na(data$Date))){ sprintf("file: %s is messed up", filename) flag <- TRUE break } data <- data[data$Date >= Sys.Date(),] DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, data$Date)) data[,"Cashflow"] <- sanitize.column(data[,"Cashflow"]) pv <- crossprod(DC$discounts, data[, "Cashflow"]) r[i] <- pv if(flag){ cusipsdata[[cusip]] <- NULL flag <- FALSE break }else{ cusipdata[[cusip]]$Cashflow <- r } } } prices <- c() for(cusip in names(cusipdata)){ prices <- c(prices, mean(cusipdata[[cusip]]$Cashflow)/cusipdata[[cusip]]$currbal) } i <- 1 for(cusip in names(cusipdata)){ cat(cusip, prices[i], "\n") i <- i+1 }