library(RPostgreSQL) library(RQuantLib) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } source(file.path(root.dir, "code", "R", "etdb.R")) source(file.path(root.dir, "code", "R", "yieldcurve.R")) source(file.path(root.dir, "code", "R", "cds_utils.R")) source(file.path(root.dir, "code", "R", "intex_deal_functions.R")) source(file.path(root.dir, "code", "R", "optimization.R")) workdate <- as.Date("2013-02-11") MarkitData <- getMarkitIRData(workdate) L1m <- buildMarkitYC(MarkitData, dt = 1/12) L2m <- buildMarkitYC(MarkitData, dt = 1/6) L3m <- buildMarkitYC(MarkitData) L6m <- buildMarkitYC(MarkitData, dt = 1/2) L12m <- buildMarkitYC(MarkitData, dt = 1) setEvaluationDate(as.Date(MarkitData$effectiveasof)) sanitize.column <- function(vec){ vec <- gsub(",", "", vec) index <- grep("\\(", vec) for(l in index){ vec[l] <- -as.numeric(substr(vec[l], 2, nchar(vec[l])-1)) } return( as.numeric(vec) ) } allfiles <- list.files(file.path(root.dir, "Scenarios", paste0("Prices_", workdate)), "*.txt") allfiles <- unique(sapply(strsplit(allfiles, "-"), function(x) x[1])) allfiles <- allfiles[!(allfiles=="Total")] dealnames <- list.files(file.path(root.dir, "Scenarios", paste0("Prices_", workdate)), "*COLLAT_INITIAL-CF-Scen1*") dealnames <- unique(sapply(strsplit(dealnames, "-"), function(x) x[1])) cusips <- setdiff(allfiles, dealnames) dealnames <- tolower(dealnames) getdealcf <- function(dealnames, workdate=Sys.Date()){ cfdata <- list() tranches <- c("COLLAT_REINVEST", "COLLAT_INITIAL") fields <- c("Cashflow", "Principal", "Interest") flag <- FALSE n.scenarios <- 100 for(dealname in dealnames){ cfdata[[dealname]] <- list() r <- matrix(0, n.scenarios, 3) colnames(r) <- fields sqlstring <- sprintf("select marketvalue from latest_deal_model_numbers where dealname='%s'", dealname) mv <- dbGetQuery(dbCon, sqlstring)$marketvalue sqlstring <- sprintf("select \"Curr Collat Bal\" from latest_clo_universe where dealname='%s'", dealname) currbal <- dbGetQuery(dbCon, sqlstring)$"Curr Collat Bal" cfdata[[dealname]]$mv <- mv cfdata[[dealname]]$currbal <- currbal for(tranche in tranches){ for(i in 1:n.scenarios){ filename <- paste0(paste(toupper(dealname), tranche, "CF", paste0("Scen", i), sep="-"), ".txt") ## we catch the error if there is an error reading the file ## happen if the tranche is missing in intex data <- tryCatch( read.table(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename), sep="\t", header=F, skip=3, colClasses="character", comment.char=""), error = function(e) e) if(inherits(data, "error")){ cfdata[[dealname]] <- NULL break } data <- data[,1:4] colnames(data) <- c("Date", "Cashflow", "Principal", "Interest") data$Date <- as.Date(data$Date, "%b %d, %Y") if(any(is.na(data$Date))){ cat(sprintf("file: %s is messed up", filename), "\n") flag <- TRUE break } futuredates <- data$Date[data$Date>=workdate] pastdates <- data$Date[data$Datelength(DC$times)){ DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, futuredates)) } pv <- c() for(field in fields){ data[,field] <- tryCatch(sanitize.column(data[,field]), warning = function(w){cat("garbled", dealname, i)}) if(length(futuredates) == 0){ df <- rep(1, length(pastdates)) }else{ df <- c(rep(1, length(pastdates)), DC$discounts[1:length(futuredates)]) } if(nrow(data)>0){ pv <- c(pv, crossprod(df, data[,field])) }else{ pv <- c(pv, 0) } } r[i,] <- pv } if(flag){ cfdata[[dealname]] <- NULL flag <- FALSE break }else{ cfdata[[dealname]][[tranche]]<- r } } cf <- cfdata[[dealname]][["COLLAT_REINVEST"]][,"Cashflow"] + cfdata[[dealname]][["COLLAT_INITIAL"]][,"Cashflow"] program <- KLfit(t(cf)/1e8, rep(1/n.scenarios, n.scenarios), cfdata[[dealname]]$mv/1e8) cfdata[[dealname]]$weight <- program$weight } return( cfdata ) } getcusipcf <- function(cusips, cfdata, workdate=Sys.Date()){ flag <- FALSE cusipdata <- list() dealnames <- dealnamefromcusip(cusips) n.scenarios <- 100 intexfields <- c("Cashflow", "Principal", "Interest", "Balance") fields <- c("Cashflow", "Principal", "Interest") for(i in 1:length(cusips)){ cusip <- cusips[i] dealdata <- getdealdata(dealnames[i]) schedule <- getdealschedule(dealdata) r <- matrix(0, n.scenarios, 4) colnames(r) <- c(fields, "wal") sqlstring <- sprintf("select curr_balance, spread from cusip_universe where cusip = '%s'", cusip) indicdata <- dbGetQuery(dbCon, sqlstring) cusipdata[[cusip]]$currbal <- indicdata$curr_balance cusipdata[[cusip]]$spread <- indicdata$spread for(j in 1:n.scenarios){ filename <- sprintf("%s-CF-Scen%s.txt", cusip, j) if(!file.exists(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename))){ next } data <- read.table(file.path(root.dir, "Scenarios", paste0("Prices_", workdate), filename), sep = "\t", header=T, colClasses="character", skip = 3, comment.char="") data <- data[, 1:5] colnames(data) <- c("Date", intexfields) data$Date <- as.Date(data$Date, "%b %d, %Y") if(any(is.na(data$Date))){ cat(sprintf("file: %s is messed up", filename), "\n") flag <- TRUE break } futuredates <- data$Date[data$Date >= workdate] pastdates <- data$Date[data$Date < workdate] if(i==1||length(futuredates)>length(DC$times)){ DC <- DiscountCurve(L3m$params, L3m$tsQuotes, yearFrac(L3m$params$tradeDate, futuredates)) } if(length(futuredates) == 0){ df <- rep(1, length(pastdates)) }else{ df <- c(rep(1, length(pastdates)), DC$discounts[1:length(futuredates)]) } pv <- c() for(field in fields){ data[,"Balance"] data[,field] <- tryCatch(sanitize.column(data[,field]), warning = function(w){cat("garbled", dealname, i)}) if(length(futuredates) == 0){ df <- rep(1, length(pastdates)) }else{ df <- c(rep(1, length(pastdates)), DC$discounts[1:length(futuredates)]) } if(nrow(data)>0){ pv <- c(pv, crossprod(df, data[,field])) }else{ pv <- c(pv, 0) } } wal <- yearFrac(workdate, data$Date) * data[,"Cashflow"]/sum(data[,"Cashflow"]) r[,j] <- c(pv, wal) } } if(flag){ cusipdata[[cusip]] <- NULL flag <- FALSE break }else{ cusipdata[[cusip]]$fields <- r cusipdata[[cusip]]$price <- crossprod(cfdata[[dealnames[i]]]$weight, cusipdata[[cusip]]$fields[,"Cashflow"])/cusipdata[[cusip]]$currbal cusipdata[[cusip]]$wal <- crossprod(cfdata[[dealnames[i]]]$weight, cusipdata[[cusip]]$fields[,"wal"]) } return(cusipdata) }