#!/usr/bin/Rscript require(methods) library(lossdistrib) options(warn=2) args <- commandArgs(trailingOnly=TRUE) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } code.dir <- Sys.getenv("CODE_DIR") if(code.dir==""){ code.dir<-root.dir } source(file.path(code.dir, "code", "R", "yieldcurve.R")) source(file.path(code.dir, "code", "R", "optimization.R")) source(file.path(code.dir, "code", "R", "calibration.R"), chdir=TRUE) source(file.path(code.dir, "code", "R", "mlpdb.R")) ##figure out the tradedate if(length(args) >= 1){ tradedate <- as.Date(args[1]) }else{ tradedate <- addBusDay(Sys.Date(), -1) } index <- load.index("hy21", date=tradedate) exportYC(tradedate) ## calibrate HY21 ## calibrate the single names curves index <- set.singlenamesdata(index, tradedate) index <- set.tranchedata(index, tradedate) ## load tranche data n.credit <- length(index$portfolio) Ngrid <- 2 * n.credit + 1 acc <- cdsAccrued(tradedate, index$tranche.running[1]) index$cs$coupons <- index$cs$coupons*0.05 ##calibrate by modifying the factor distribution bottomup <- 1:3 topdown <- 2:4 n.int <- 500 n.credit <- length(index$portfolio) errvec <- c() quadrature <- GHquad(n.int) w <- quadrature$w Z <- quadrature$Z w.mod <- w p <- index$defaultprob rho <- rep(0.45, n.credit) result <- matrix(0, 4, n.int) err <- Inf while(err >0.01){ Rstoch <- array(0, dim=c(n.credit, n.int, ncol(index$defaultprob))) for(t in 1:ncol(index$defaultprob)){ for(i in 1:n.credit){ Rstoch[i,,t] <- stochasticrecovC(index$recov[i], 0, Z, w.mod, rho[i], index$defaultprob[i,t], p[i,t]) } } L <- array(0, dim=c(n.int, Ngrid, ncol(index$defaultprob))) R <- array(0, dim=c(n.int, Ngrid, ncol(index$defaultprob))) for(t in 1:ncol(index$defaultprob)){ S <- 1 - Rstoch[,,t] L[,,t] <- t(lossdistCZ(p[,t], index$issuerweights, S, Ngrid, 0, rho, Z)) R[,,t] <- t(lossdistCZ(p[,t], index$issuerweights, 1-S, Ngrid, 0, rho, Z)) } for(i in 1:n.int){ result[,i] <- tranche.pvvec(index$K, L[i,,], R[i,,], index$cs) - acc } ## solve the optimization problem program <- KLfit(100*(result[bottomup,]+1), w, index$tranche.upf[bottomup]) err <- 0 for(i in 1:n.credit){ for(j in 1:ncol(p)){ err <- err + abs(crossprod(shockprob(p[i,j], rho[i], Z), program$weight) - index$defaultprob[i,j]) } } errvec <- c(errvec, err) ## update the new probabilities p <- MFupdate.probC(Z, program$weight, rho, index$defaultprob) errvec <- c(errvec, err) w.mod <- program$weight cat(err,"\n") } Rstoch <- array(0, dim=c(n.credit, n.int, ncol(index$defaultprob))) for(t in 1:ncol(index$defaultprob)){ for(i in 1:n.credit){ Rstoch[i,,t] <- stochasticrecovC(index$recov[i], 0, Z, w.mod, rho[i], index$defaultprob[i,t], p[i,t]) } } Lw <- matrix(0, Ngrid, n.int) Rw <- matrix(0, Ngrid, n.int) L <- matrix(0, Ngrid, ncol(index$defaultprob)) R <- matrix(0, Ngrid, ncol(index$defaultprob)) for(t in 1:ncol(index$defaultprob)){ S <- 1 - Rstoch[,,t] Lw <- lossdistCZ(p[,t], index$issuerweights, S, Ngrid, 0, rho, Z) Rw <- lossdistCZ(p[,t], index$issuerweights, 1-S, Ngrid, 0, rho, Z) L[,t] <- Lw%*%w.mod R[,t] <- Rw%*%w.mod } dist <- list(L=L, R=R) write.table(data.frame(Z=Z, w=w.mod), file=file.path(root.dir, "Scenarios", "Calibration", paste0("calibration-", tradedate, ".csv")), col.names=T, row.names=F, sep=",") save(index, dist, file = file.path(root.dir, "Scenarios", "Calibration", paste0("marketdata-", tradedate, ".RData")), compress="xz")