#!/usr/bin/Rscript library("parallel") if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" cl <- makeForkCluster(4) }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" cl <- makeCluster(6) } source(file.path(root.dir, "code", "R", "cds_utils.R")) source(file.path(root.dir, "code", "R", "cds_functions_generic.R")) source(file.path(root.dir, "code", "R", "index_definitions.R")) source(file.path(root.dir, "code", "R", "tranche_functions.R")) source(file.path(root.dir, "code", "R", "yieldcurve.R")) source(file.path(root.dir, "code", "R", "optimization.R")) #figure out the workdate filenames <- list.files(file.path(root.dir, "Scenarios", "Calibration"), pattern = "hy19_singlenames*") dates <- strtrim(sapply(strsplit(filenames, "_"), function(x)x[3]), 10) workdate <- as.Date(sort(dates, decreasing = TRUE)[1]) #retreive yield curve data MarkitData <- getMarkitIRData(workdate) L1m <- buildMarkitYC(MarkitData, dt = 1/12) L2m <- buildMarkitYC(MarkitData, dt = 1/6) L3m <- buildMarkitYC(MarkitData) L6m <- buildMarkitYC(MarkitData, dt = 1/2) setEvaluationDate(as.Date(MarkitData$effectiveasof)) ## calibrate HY19 ## calibrate the single names curves singlenames.data <- read.csv(file.path(root.dir, "Scenarios", "Calibration", paste0("hy19_singlenames_", workdate, ".csv"))) nondefaulted <- singlenames.data[!singlenames.data$ticker %in% hy19$defaulted,] bps <- 1e-4 cdsdates <- as.Date(character(0)) for(tenor in paste0(1:5, "y")){ cdsdates <- c(cdsdates, cdsMaturity(tenor)) } hy19portfolio <- c() for(i in 1:nrow(nondefaulted)){ SC <- new("creditcurve", recovery=nondefaulted$recovery[i]/100, startdate=today(), issuer=as.character(nondefaulted$ticker[i])) quotes <- data.frame(maturity=cdsdates, upfront = as.numeric(nondefaulted[i,4:8]) /100, running=rep(nondefaulted$running[i] * bps, 5)) SC@curve <- cdshazardrate(quotes, nondefaulted$recovery[i]/100) hy19portfolio <- c(hy19portfolio, SC) } issuerweights <- rep(1/length(hy19portfolio), length(hy19portfolio)) ## load tranche data K <- c(0, 0.15, 0.25, 0.35, 1) Kmodified <- adjust.attachments(K, hy19$loss, hy19$factor) markit.data <- read.csv(file.path(root.dir, "Scenarios", "Calibration", paste0("hy19_tranches_", workdate, ".csv"))) tranche.upf <- markit.data$Mid tranche.running <- c(0.05, 0.05, 0.05, 0.05) # get the index ref hy19$indexref <- markit.data$bidRefPrice[1]/100 hy19portfolio.tweaked <- tweakcurves(hy19portfolio, hy19) SurvProb <- SPmatrix(hy19portfolio.tweaked, hy19) Ngrid <- 2 * nrow(nondefaulted) + 1 recov <- sapply(hy19portfolio.tweaked, attr, "recovery") cs <- couponSchedule(nextIMMDate(workdate), hy19$maturity,"Q", "FIXED", 0.05, 0) ##calibrate by modifying the factor distribution bottomup <- 1:3 topdown <- 2:4 n.int <- 500 n.credit <- length(hy19portfolio) errvec <- c() quadrature <- gauss.quad.prob(n.int, "normal") w <- quadrature$weights Z <- quadrature$nodes w.mod <- w defaultprob <- 1 - SurvProb p <- defaultprob rho <- 0.45 clusterExport(cl, list("root.dir", "shockprob", "issuerweights", "rho", "Z", "lossrecovdist.term", "lossrecovdist", "lossdistC", "Ngrid", "tranche.pvvec", "tranche.pv", "tranche.pl", "tranche.cl", "trancheloss", "trancherecov", "pos", "Kmodified", "cs")) ## TODO: investigate if this is the right thing w.r.t recovery parf <- function(i){ pshocked <- apply(p, 2, shockprob, rho=rho, Z=Z[i]) S <- 1 - Rstoch[i,,] dist <- lossrecovdist.term(pshocked, , issuerweights, S, Ngrid) return( tranche.pvvec(Kmodified, dist$L, dist$R, cs)) } for(l in 1:100){ Rstoch <- array(0, dim=c(n.int, n.credit, ncol(SurvProb))) for(t in 1:ncol(SurvProb)){ for(i in 1:n.credit){ Rstoch[,i,t] <- stochasticrecov(recov[i], 0, Z, w.mod, rho, defaultprob[i,t], p[i,t]) } } clusterExport(cl, list("Rstoch", "p")) result <- parSapply(cl, 1:n.int, parf) ## solve the optimization problem program <- KLfit(100*(result[bottomup,]+1), w, tranche.upf[bottomup]) err <- 0 for(i in 1:n.credit){ for(j in 1:ncol(p)){ err <- err + abs(crossprod(shockprob(p[i,j], rho, Z), program$weight) - defaultprob[i,j]) } } errvec <- c(errvec, err) ## update the new probabilities p <- MFupdate.prob(Z, program$weight, rho, defaultprob) errvec <- c(errvec, err) w.mod <- program$weight cat(err,"\n") } write.table(data.frame(Z=Z, w=w.mod), file=file.path(root.dir, "Scenarios", "Calibration", paste0("calibration-", Sys.Date(), ".csv")), col.names=T, row.names=F, sep=",") save(singlenames.data, hy19, tranche.upf, file = file.path(root.dir, "Scenarios", "Calibration", paste0("marketdata-", workdate, ".RData")))