#!/usr/bin/Rscript require(methods) library(lossdistrib) options(warn=2) args <- commandArgs(trailingOnly=TRUE) if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } code.dir <- Sys.getenv("CODE_DIR") if(code.dir==""){ code.dir<-root.dir } source(file.path(code.dir, "code", "R", "yieldcurve.R")) source(file.path(code.dir, "code", "R", "optimization.R")) source(file.path(code.dir, "code", "R", "calibration.R"), chdir=TRUE) source(file.path(code.dir, "code", "R", "mlpdb.R")) ##figure out the tradedate if(length(args) >= 1){ tradedate <- as.Date(args[1]) }else{ tradedate <- addBusDay(Sys.Date(), -1) } exportYC(tradedate) ## calibrate HY21 ## calibrate the single names curves n.int <- 250 list2env(GHquad(n.int), envir=parent.frame()) Ngrid <- 201 index <- load.index("hy21", date=tradedate, "5yr", Z, w, Ngrid) index <- set.singlenamesdata(index, tradedate) index <- set.tranchedata(index, tradedate) ## load tranche data n.credit <- length(index$portfolio) index$cs$coupons <- index$cs$coupons*0.05 ##calibrate by modifying the factor distribution bottomup <- 1:3 topdown <- 2:4 index$w.mod <- w p <- index$defaultprob rho <- rep(0.45, n.credit) result <- matrix(0, 4, n.int) err <- Inf errvec <- c() while(err >0.01){ Rstoch <- MFrecovery(index, p) L <- array(0, dim=c(index$N, n.int, ncol(index$defaultprob))) R <- array(0, dim=c(index$N, n.int, ncol(index$defaultprob))) for(t in 1:ncol(index$defaultprob)){ S <- 1 - Rstoch[,,t] L[,,t] <- lossdistCZ(p[,t], index$issuerweights, S, index$N, 0, rho, index$Z) R[,,t] <- lossdistCZ(p[,t], index$issuerweights, 1-S, index$N, 0, rho, index$Z) } for(i in 1:n.int){ result[,i] <- tranche.pvvec(index$K, L[,i,], R[,i,], index$cs) } ## solve the optimization problem program <- KLfit(-result[bottomup,], w, index$tranche.quotes[bottomup]) err <- 0 for(i in 1:n.credit){ for(j in 1:ncol(p)){ err <- err + abs(crossprod(shockprob(p[i,j], rho[i], Z), program$weight) - index$defaultprob[i,j]) } } errvec <- c(errvec, err) ## update the new probabilities p <- MFupdate.probC(Z, program$weight, rho, index$defaultprob) errvec <- c(errvec, err) index$w.mod <- program$weight cat(err,"\n") } dist <- MFdist(index) write.table(data.frame(Z=Z, w=index$w.mod), file=file.path(root.dir, "Scenarios", "Calibration", paste0("calibration-", tradedate, ".csv")), col.names=T, row.names=F, sep=",") save(index, dist, file = file.path(root.dir, "Scenarios", "Calibration", paste0("marketdata-", tradedate, ".RData")), compress="xz")