if(.Platform$OS.type == "unix"){ root.dir <- "/home/share/CorpCDOs" }else{ root.dir <- "//WDSENTINEL/share/CorpCDOs" } options(stringsAsFactors=FALSE) source(file.path(root.dir, "code", "R", "cds_utils.R")) source(file.path(root.dir, "code", "R", "cds_functions_generic.R")) source(file.path(root.dir, "code", "R", "yieldcurve.R")) source(file.path(root.dir, "code", "R", "optimization.R")) library(lossdistrib) load.index("hy21") load.index("hy19") n.int <- 250 bps <- 1e-4 attach(GHquad(n.int)) tradedate <- as.Date("2014-05-05") exportYC(tradedate) cdsdates <- as.Date(character(0)) for(tenor in paste0(1:5, "y")){ cdsdates <- c(cdsdates, cdsMaturity(tenor, date=tradedate)) } cds.cs <- couponSchedule(IMMDate(tradedate), cdsdates[length(cdsdates)], "Q", "FIXED", 1, tradedate, IMMDate(tradedate, "prev")) ##build portfolio buildSC <- function(quote, cs){ SC <- new("creditcurve", recovery=quote$recovery/100, startdate=tradedate, issuer=as.character(quote$ticker)) quotes <- data.frame(maturity=cdsdates, upfront = as.numeric(quote[4:8]) * 0.01, running=rep(quote$running*1e-4, 5)) SC@curve <- cdshazardrate(quotes, SC@recovery, tradedate, cs) return( SC ) } set.singlenamesdata <- function(index, tradedate){ index.name <- deparse(substitute(index)) singlenames.data <- read.csv(file.path(root.dir, "Scenarios", "Calibration", paste0(index.name, "_singlenames_", tradedate, ".csv"))) nondefaulted <- singlenames.data[!singlenames.data$ticker %in% index$defaulted,] index$portfolio <- c() for(i in 1:nrow(nondefaulted)){ index$portfolio <- c(index$portfolio, buildSC(nondefaulted[i,], cds.cs)) } index$issuerweights <- rep(1/length(index$portfolio), length(index$portfolio)) index$recov <- sapply(index$portfolio, attr, "recovery") assign(index.name, index, envir=parent.env(environment())) } ## load all the single names data ## calibrate the single names curves set.singlenamesdata(hy21, tradedate) set.singlenamesdata(hy19, tradedate) ## load tranche data set.tranchedata <- function(index, tradedate){ index.name <- deparse(substitute(index)) index$tranche.data <- read.csv(file.path(root.dir, "Scenarios", "Calibration", paste0(index.name, "_tranches_", tradedate, ".csv")), header=TRUE) index$indexref <- index$tranche.data$bidRefPrice[1]/100 index$portfolio.tweaked <- tweakcurves(index$portfolio, index, tradedate)$portfolio index$cs <- couponSchedule(IMMDate(tradedate), index$maturity,"Q", "FIXED", 0.05, 0, tradedate, IMMDate(tradedate, "prev")) index$defaultprob <- 1-SPmatrix(index$portfolio.tweaked, length(index$cs$dates)) K <- c(0, 0.15, 0.25, 0.35, 1) index$K <- adjust.attachments(K, index$loss, index$factor) index$tranche.upf <- index$tranche.data$Mid index$tranche.running <- index$tranche.data$Coupon ##convert the quotes ## - we convert to protection terms x->1-x/100 ## - we remove accrued x->x-acc ## - we weight it by the size of the tranche ## - we take the cumsum to convert to 0-5, 0-10, 0-15 quotes, etc... ## calibrate the tranches using base correlation index$quotes <- cumsum(diff(index$K) * (1-index$tranche.upf/100-cdsAccrued(tradedate, index$tranche.running))) assign(index.name, index, envir=parent.env(environment())) } set.tranchedata(hy19, tradedate) set.tranchedata(hy21, tradedate) ## load common parameters Ngrid <- 201 f <- function(rho, index, N, i){ temp <- with(index, BClossdistC(defaultprob, issuerweights, recov, rho, Z, w, N)) return(abs(tranche.pv(temp$L, temp$R, index$cs, 0, index$K[i+1]) + index$quotes[i])) } rhovec <- c() for(i in 1:3){ rho <- optimize(f, interval=c(0,1), index=hy21, N=Ngrid, i=i)$minimum rhovec <- c(rhovec, rho) } rhovec <- c(0, rhovec) K <- c(0, 0.15, 0.25, 0.35, 1) rhofun <- approxfun(K[-5], rhovec, rule=2) Kmapped <- rep(0, 3) for(i in 2:4){ Kmapped[i-1] <- skewmapping(hy21, rhofun, hy19, K[i], Z, w, 201)$minimum }