import datetime import math import numpy as np from numba import jit, float64 @jit(float64(float64, float64, float64, float64, float64, float64),cache=True,nopython=True) def sabr_lognormal(alpha, rho, nu, F, K, T): A = 1 + (0.25 * (alpha * nu * rho) + nu * nu * (2 - 3 * rho * rho) / 24.) * T if F == K: VOL = alpha * A elif F != K: nulogFK = nu * math.log(F/K) z = nulogFK / alpha x = math.log( ( math.sqrt(1-2*rho*z+z**2) + z - rho ) / (1-rho) ) VOL = (nulogFK * A) / x return VOL @jit(float64(float64, float64, float64, float64, float64, float64),cache=True,nopython=True) def sabr_normal(alpha, rho, nu, F, K, T): if F == K: V = F A = 1 + (alpha * alpha / (24. * V * V) + nu * nu * (2 - 3 * rho * rho) / 24.) * T VOL = (alpha / V) * A elif F != K: V = math.sqrt(F * K) logFK = math.log(F/K) z = (nu/alpha)*V*logFK x = math.log( ( math.sqrt(1-2*rho*z+z**2) + z - rho ) / (1-rho) ) A = 1 + ( (alpha * alpha) / (24. * (V * V)) + ((nu * nu) * (2 - 3 * (rho * rho)) / 24.) ) * T logFK2 = logFK * logFK B = 1/1920. * logFK2 + 1/24. B = 1 + B * logFK2 VOL = (nu * logFK * A) / (x * B) return VOL @jit(float64(float64, float64, float64, float64, float64, float64, float64),cache=True,nopython=True) def sabr(alpha, beta, rho, nu, F, K, T): if beta == 0.: return sabr_normal(alpha, rho, nu, F, K, T) elif beta == 1.: return sabr_lognormal(alpha, rho, nu, F, K, T) else: if F == K: # ATM formula V = F**(1-beta) A = 1 + ( ((1-beta)**2*alpha**2)/(24.*(V**2)) + (alpha*beta*nu*rho) / (4.*V) + ((nu**2)*(2-3*(rho**2))/24.) ) * T VOL = (alpha/V)*A elif F != K: # not-ATM formula V = (F*K)**((1-beta)/2.) logFK = math.log(F/K) z = (nu/alpha)*V*logFK x = math.log( ( math.sqrt(1-2*rho*z+z**2) + z - rho ) / (1-rho) ) A = 1 + ( ((1-beta)**2*alpha**2)/(24.*(V**2)) + (alpha*beta*nu*rho)/(4.*V) + ((nu**2)*(2-3*(rho**2))/24.) ) * T B = 1 + (1/24.)*(((1-beta)*logFK)**2) + (1/1920.)*(((1-beta)*logFK)**4) VOL = (nu*logFK*A)/(x*B) return VOL if __name__ == "__main__": from analytics.option import BlackSwaption from analytics import Index from scipy.optimize import least_squares underlying = Index.from_name("IG", 28, "5yr") underlying.spread = 67.5 exercise_date = datetime.date(2017, 9, 20) option = BlackSwaption(underlying, exercise_date, 70) strikes = np.array([50, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85]) pvs = np.array([44.1, 25.6, 18.9, 14, 10.5, 8.1, 6.4, 5, 3.3, 2.2, 1.5]) * 1e-4 strikes = np.array([50, 55, 57.5, 60, 62.5, 65, 67.5, 70, 75, 80, 85, 90, 95, 100]) pvs = np.array([53.65, 37.75, 31.55, 26.45, 22.25, 18.85, 16.15, 13.95, 10.55, 8.05, 6.15, 4.65, 3.65, 2.75]) * 1e-4 def calib(x, option, strikes, pv, beta): alpha, rho, nu = x F = option.forward_spread T = option.T r = np.empty_like(strikes) for i, K in enumerate(strikes): option.strike = K option.sigma = sabr(alpha, beta, rho, nu, F, K, T) r[i] = option.pv - pv[i] return r prog = least_squares(calib, (0.3, 0.5, 0.3), bounds=(np.zeros(3), [np.inf, 1, np.inf]), args=(option, strikes, pvs, 1))