from analytics import ATMstrike from joblib import delayed, Parallel import pandas as pd from copy import deepcopy def run_swaption_scenarios(swaption, date_range, spread_shock, vol_shock, vol_surface, params=["pv"]): """computes the pv of a swaption for a range of scenarios Parameters ---------- swaption_copy : Swaption date_range : `pandas.Datetime.Index` spread_shock : `np.array` vol_shock : `np.array` vol_surface params : list of strings list of attributes to call on the swaption object. """ r = [] swaption = deepcopy(swaption) spreads = swaption.ref * (1 + spread_shock) for date in date_range: swaption.index.trade_date = date.date() T = swaption.T for s in spreads: swaption.ref = s curr_vol = float(vol_surface(T, swaption.moneyness)) for vs in vol_shock: swaption.sigma = curr_vol * (1 + vs) r.append([date, s, vs] + [getattr(swaption, p) for p in params]) df = pd.DataFrame.from_records(r, columns=['date', 'spread_shock', 'vol_shock'] + params) return df.set_index('date') def run_index_scenarios(index, date_range, spread_shock): r = [] index = deepcopy(index) starting_pv = index.clean_pv starting_date = index.trade_date spreads = index.spread * (1 + spread_shock) for date in date_range: index.trade_date = date.date() for s in spread: index.spread = s scen_pv = index.clean_pv + index.notional * (date.date()-starting_date).days /360 * index.fixed_rate * 1e-4 - starting_pv r.append([date, s, scen_pv]) df = pd.DataFrame.from_records(r, columns=['date', 'spread', 'pnl']) return df.set_index('date')