import datetime import pandas as pd import pathlib from exchangelib import FileAttachment from io import StringIO from typing import Tuple from serenitas.analytics.dates import bus_day from serenitas.utils.db import dbconn, dawn_engine from serenitas.utils.env import DAILY_DIR def download_messages(em): for msg in em.get_msgs( 20, path=["BowdoinOps", "Reports"], subject__startswith="Document(s) from Reporting", ): if msg.sender == "notify@bnymellon.com": for attach in msg.attachments: fname = attach.name if fname.endswith("csv") and ( fname.startswith("Asset Detail") or fname.startswith("Net Investment") or fname.startswith("Settled Cash") ): date = datetime.datetime.strptime( fname.split("_")[1].split(".")[0], "%d %b %Y" ).date() p = DAILY_DIR / str(date) / "Reports" / fname if not p.parent.exists(): p.parent.mkdir(parents=True) if not p.exists(): p.write_bytes(attach.content) def get_dir(workdate: datetime.date) -> pathlib.Path: p = DAILY_DIR / str(workdate) / "Reports" if not p.exists(): p = ( DAILY_DIR / str(workdate.year) / f"{workdate:%Y_%m}" / str(workdate) / "Reports" ) return p def load_val_report(workdate: datetime.date): p = get_dir(workdate) / f"Asset Detail_{workdate:%d %b %Y}.csv" df = pd.read_csv( p, thousands=",", parse_dates=["As Of Date", "Maturity Date", "Report Run Date"] ) df = df.drop( [ "Reporting Account Number", "Reporting Account Name", "Source Account Name", "Xref Security ID", "Country Name", "Country Code", "Local Currency Name", "Acct Base Currency Name", "Acct Base Currency Code", "CINS", "Issuer ID", "SEDOL", "Valoren", "Sicovam", "WPK", "Quick", "Underlying Sec ID", "Loan ID", "Manager", "Book Yield Value", "Counterparty", "Ticker with Exchange Code", "Ticker with Yellow Key", "Accounting Status", "Primary GSP Account", "Extended GSP Account Number", "Percent Of Total", ], axis=1, ) if "Acctg Status Update (EDT)" in df: del df["Acctg Status Update (EDT)"] elif "Acctg Status Update (EST)" in df: del df["Acctg Status Update (EST)"] df["Source Account Number"] = df["Source Account Number"].str[-4:].astype("int") df.columns = df.columns.str.replace(" ", "_").str.lower() df = df.rename( columns={ "shares/par": "current_notional", "local_unrealized_gain/loss": "local_unrealized_pnl", "base_unrealized_gain/loss": "base_unrealized_pnl", } ) for col in [ "current_notional", "local_price", "base_price", "local_cost", "base_cost", "local_market_value", "base_market_value", "local_unrealized_pnl", "base_unrealized_pnl", "local_notional_cost", "base_notional_cost", "local_notional_value", "base_notional_value", ]: if df[col].dtype != "float64": df[col] = df[col].apply(lambda s: "-" + s[1:-1] if s.startswith("(") else s) df[col] = pd.to_numeric(df[col].str.replace(",", "")) df["row"] = df.index df.to_sql("bowdst_val", dawn_engine, if_exists="append", index=False) def load_pnl_report(workdate: datetime.date): if workdate.weekday() == 0: workdate -= datetime.timedelta(days=2) p = ( get_dir(workdate) / f"Net Investment Earned Income by Security_{workdate:%d %b %Y}.csv" ) df = pd.read_csv(p, thousands=",", parse_dates=["Begin Date", "End Date"]) df = df.drop( [ "Reporting Account Number", "Reporting Account Name", "Reporting Account Base Currency", "Accounting Status", "Security Cross Reference Type", "Security Cross Reference Cusip", "Local Currency Description", "Country Of Issue", "Country Of Issue Description", "State Code", "Asset Type Code", "5500 category code", "5500 class code Description", "CINS", "SEDOL", "Valoren", "Sicovam", "WPK", "QUICK", "Underlying Sec ID", "Loan ID", "Counterparty", "Source Account Name", "Source Account Number", "Fair Value Hierarchy - Beginning of Period", "Fair Value Override - Beginning of Period", "Fair Value Hierarchy - End of Period", "Fair Value Override - End of Period", "Country of Registration name", "Country of Registration code", ], axis=1, ) df.columns = df.columns.str.replace(" ", "_").str.lower() df = df.rename( columns={ "change_in_unrealized_currency_gain_loss": "unrealized_currency", "change_in_unrealized_investment_gain_loss": "unrealized_investment", "total_change_in_unrealized_gain_loss": "total_unrealized", "accretion/amortization": "accretion_amortization", "journal_entry_accretion/amortization": "journal_entry_accretion_amortization", "realized_gain/loss": "realized_gain_loss", "journal_entry_realized_g/l": "journal_entry_realized_gl", "manager": "link_ref", "realized_gain/loss_investment": "realized_investment", "realized_gain/loss_currency": "realized_currency", "realized_gain/loss_settled": "realized_settled", "realized_gain/loss_traded": "realized_traded", } ) for col in [ "unrealized_currency", "unrealized_investment", "total_unrealized", "ending_shares_par", "opening_receivables", "closing_receivables", "income", "journal_entry_income", "accretion_amortization", "journal_entry_accretion_amortization", "realized_gain_loss", "journal_entry_realized_gl", "realized_loss_impaired_securities", "net_investment_income", "realized_investment", "realized_currency", "realized_settled", "realized_traded", ]: if df[col].dtypes == "object": df[col] = df[col].apply(lambda s: "-" + s[1:-1] if s.startswith("(") else s) df[col] = pd.to_numeric(df[col].str.replace(",", "")) df["row"] = df.index df.to_sql("bowdst_pnl", dawn_engine, if_exists="append", index=False) def cmp_positions(cob: datetime.date, df_blotter: pd.DataFrame) -> pd.DataFrame: workdate = (cob + bus_day).date() p = DAILY_DIR / str(workdate) / "Reports" / f"Asset Detail_{workdate:%d %b %Y}.csv" df = pd.read_csv(p, thousands=",") df = df[df["Asset Type"] == "FIXED INCOME SECURITIES"] df = df.set_index("CUSIP") df = df[["Shares/Par", "Base Price", "Local Market Value"]] for col in df.select_dtypes(include=["object"]).columns: df[col] = df[col].apply(lambda s: s[1:-1] if s.startswith("(") else s) df[col] = pd.to_numeric(df[col].str.replace(",", "")) check = df_blotter.join(df) return check def load_cash_report(workdate: datetime.date): p = ( DAILY_DIR / str(workdate) / "Reports" / f"Settled Cash Statement_{workdate:%d %b %Y}.csv" ) df = pd.read_csv(p, thousands=",") df = df[ df["Transaction Type"].isna() | df["Transaction Type"].isin(["BUY", "SELL"]) ] df = df.groupby(["Account Name", "Account Number", "Local Currency Code"]).sum() df["date"] = workdate df["fund"] = "BOWDST" df = df[["Opening Balance Local", "date", "fund"]] df.reset_index(inplace=True) df["Account Number"] = df["Account Number"].astype( "int64" ) # Account Numbers are read in as float df = df.rename( { "Account Name": "account_name", "Account Number": "account_number", "Local Currency Code": "currency_code", "Opening Balance Local": "balance", }, axis=1, ) df.to_sql("cash_balances", dawn_engine, if_exists="append", index=False) def get_positions( cob: datetime.date, ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: dawndb = dbconn("dawndb") df_blotter = pd.read_sql_query( "SELECT * FROM risk_positions(%s, NULL, %s)", dawndb, params=(cob, "BOWDST"), index_col=["identifier"], ) cds_positions = pd.read_sql_query( "SELECT * FROM list_cds_marks_pre(%s, NULL, %s)", dawndb, params=(cob, "BOWDST"), index_col=["security_id"], ) tranche_positions = pd.read_sql_query( "SELECT id, security_id, security_desc, maturity, a.notional, " "protection, orig_attach, orig_detach, tranche_factor, clean_nav, " "accrued, cp_code, cpty_id from list_cds(%s, %s) a " "LEFT JOIN tranche_risk ON id=tranche_id AND date=%s " "WHERE orig_attach IS NOT NULL", dawndb, params=(cob, "BOWDST", cob), index_col=["id"], ) return df_blotter, cds_positions, tranche_positions def send_email( em, workdate: datetime.date, df_bonds: pd.DataFrame, df_cds: pd.DataFrame, df_tranches: pd.DataFrame, ): attachments = [] for name, df in zip(("bonds", "cds", "tranches"), (df_bonds, df_cds, df_tranches)): buf = StringIO() df.to_csv(buf) attachments.append( FileAttachment( name=f"{workdate} {name}.csv", content=buf.getvalue().encode() ) ) buf.close() em.send_email( f"{workdate} EOD positions", "", to_recipients=( "reconfiles@bnymellon.com", "hm-operations@bnymellon.com", "caagprim@bnymellon.com", ), cc_recipients=("bowdoin-ops@lmcg.com",), attach=attachments, ) if __name__ == "__main__": import argparse from serenitas.utils.exchange import ExchangeMessage parser = argparse.ArgumentParser() parser.add_argument( "workdate", nargs="?", type=datetime.date.fromisoformat, default=datetime.date.today(), help="working date", ) args = parser.parse_args() em = ExchangeMessage() download_messages(em) cob = (args.workdate - bus_day).date() df_bonds, df_cds, df_tranches = get_positions(cob) send_email(em, cob, df_bonds, df_cds, df_tranches) load_cash_report(args.workdate) load_val_report(args.workdate) load_pnl_report(args.workdate)