from analytics.basket_index import MarkitBasketIndex from pyisda.legs import FeeLeg, ContingentLeg from pyisda.logging import enable_logging import pandas as pd from db import dbconn def all_curves_pv(curves, today_date, jp_yc, start_date, step_in_date, value_date, maturities): r = {} for d in maturities: tenor = {} coupon_leg = FeeLeg(start_date, d, True, 1., 1.) default_leg = ContingentLeg(start_date, d, True) accrued = coupon_leg.accrued(step_in_date) tickers = [] data = [] for sc in curves: coupon_leg_pv = coupon_leg.pv(today_date, step_in_date, value_date, jp_yc, sc, False) default_leg_pv = default_leg.pv(today_date, step_in_date, value_date, jp_yc, sc, 0.4) tickers.append(sc.ticker) data.append((coupon_leg_pv-accrued, default_leg_pv)) r[pd.Timestamp(d)] = pd.DataFrame.from_records(data, index=tickers, columns=['duration', 'protection_pv']) return pd.concat(r, axis=1).swaplevel(axis=1).sort_index(axis=1, level=0) def calibrate_portfolio(index_type, series, tenors=['3yr', '5yr', '7yr', '10yr'], start_date=None): try: index = MarkitBasketIndex(index_type, series, tenors) except ValueError: return if start_date: index.index_quotes = index.index_quotes[start_date:] for value_date, v in index.index_quotes.groupby('date')['id']: index.value_date = value_date index.tweak() df = pd.concat([index.theta(), index.duration(), pd.Series(index.tweaks, index=tenors, name='tweak')], axis=1) for (_, t), id in v.items(): yield (id, df.loc[t]) if __name__ == "__main__": enable_logging() import argparse import logging import os parser = argparse.ArgumentParser() parser.add_argument('index', help="index type (IG, HY, EU or XO)") parser.add_argument('series', help="series", type=int) parser.add_argument('--latest', required=False, action="store_true") args = parser.parse_args() index, series = args.index, args.series conn = dbconn('serenitasdb') if args.latest: with conn.cursor() as c: c.execute("SELECT max(date) FROM index_quotes_pre " "RIGHT JOIN index_risk2 USING (id) " "WHERE index=%s AND series=%s " "AND tenor in ('3yr', '5yr', '7yr', '10yr')", (index, series)) start_date, = c.fetchone() else: start_date = None fh = logging.FileHandler(filename=os.path.join(os.getenv("LOG_DIR"), "index_curves.log")) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") fh.setFormatter(formatter) loggers = [logging.getLogger("analytics"), logging.getLogger("index_curves")] for logger in loggers: logger.setLevel(logging.INFO) logger.addHandler(fh) loggers[1].info(f"filling {index} {series}") g = calibrate_portfolio(index, series, ['3yr', '5yr', '7yr', '10yr'], start_date) with conn.cursor() as c: for id, t in g: c.execute("INSERT INTO index_risk2 VALUES(%s, %s, %s, %s) ON CONFLICT (id) " "DO UPDATE SET theta=%s, duration=%s, tweak=%s", (id,) + tuple(t) + tuple(t)) conn.commit() conn.close()