from analytics.curve_trades import on_the_run from analytics.index_data import get_index_quotes, index_returns from utils.db import serenitas_engine, dawn_engine import pandas as pd import math import datetime def hist_var(portf, index_type="IG", quantile=0.05, years=5): df = index_returns( index=index_type, years=years, tenor=["3yr", "5yr", "7yr", "10yr"] ) df = df.reset_index(["index"], drop=True).reorder_levels( ["date", "series", "tenor"] ) returns = df.spread_return.dropna().reset_index("series") returns["dist_on_the_run"] = returns.groupby("date")["series"].transform( lambda x: x.max() - x ) del returns["series"] returns = returns.set_index("dist_on_the_run", append=True).unstack("tenor") returns.columns = returns.columns.droplevel(0) portf.reset_pv() otr = on_the_run(index_type) spreads = pd.DataFrame( { "spread": portf.spread, "tenor": [ind.tenor for ind in portf.indices], "dist_on_the_run": [otr - ind.series for ind in portf.indices], } ) spreads = spreads.set_index(["dist_on_the_run", "tenor"]) r = [] for k, g in returns.groupby(level="date", as_index=False): shocks = g.reset_index("date", drop=True).stack("tenor") shocks.name = "shocks" portf.spread = spreads.spread * (1 + spreads.join(shocks).shocks) r.append((k, portf.pnl)) pnl = pd.DataFrame.from_records(r, columns=["date", "pnl"], index=["date"]) return pnl.quantile(quantile) * math.sqrt(20)