from analytics.curve_trades import on_the_run from analytics.index_data import get_index_quotes, index_returns from db import dbengine import pandas as pd import math import datetime dawndb = dbengine('dawndb') serenitasdb = dbengine('serenitasdb') def hist_var(portf, index_type='IG', quantile=.05, years=5): df = index_returns(index=index_type, years=years, tenor=['3yr', '5yr', '7yr', '10yr']) df = (df.reset_index(['index'], drop=True). reorder_levels(['date', 'series', 'tenor'])) returns = df.spread_return.dropna().reset_index('series') returns['dist_on_the_run'] = (returns. groupby('date')['series']. transform(lambda x: x.max() - x)) del returns['series'] returns = returns.set_index('dist_on_the_run', append=True).unstack('tenor') returns.columns = returns.columns.droplevel(0) portf.reset_pv() otr = on_the_run(index_type) spreads = pd.DataFrame({'spread': portf.spread, 'tenor': [ind.tenor for ind in portf.indices], 'dist_on_the_run': [otr - ind.series for ind in portf.indices]}) spreads = spreads.set_index(['dist_on_the_run', 'tenor']) r = [] for k, g in returns.groupby(level='date', as_index=False): shocks = g.reset_index('date', drop=True).stack('tenor') shocks.name = 'shocks' portf.spread = spreads.spread * (1 + spreads.join(shocks).shocks) r.append((k, portf.pnl)) pnl = pd.DataFrame.from_records(r, columns=['date', 'pnl'], index=['date']) return pnl.quantile(quantile) * math.sqrt(12)