from index_data import get_index_quotes, index_returns import pandas as pd ## look at spreads df = get_index_quotes("IG", [23, 24, 25, 26, 27], tenor=['3yr', '5yr', '7yr', '10yr']) spreads = df.groupby(level=['date', 'tenor']).nth(-1)['closespread'].unstack(-1) # remove 'yr' spreads.columns = [int(col[:-2]) for col in spreads.columns] spreads = spreads.sort_index(1) spreads_diff = spreads.diff(axis=1) spreads_diff = spreads_diff.filter([5, 7, 10]) spreads_diff.columns = ['3-5', '5-7', '7-10'] spreads_diff.plot() ## look at returns df = index_returns(index='IG', series=[24, 25, 26, 27, 28], tenor=['3yr', '5yr', '7yr', '10yr']) ## on-the-run returns returns = df.price_return.unstack(-1).dropna().groupby(level='date').nth(-1) strategy510 = returns['5yr'] - 0.56 * returns['10yr'] strategy710 = returns['5yr'] - 0.75 * returns['10yr'] strategy3510 = -2*returns['3yr']+3*returns['5yr'] - returns['10yr'] monthly_returns510 = strategy510.groupby(pd.TimeGrouper(freq='M')).agg(lambda df:(1+df).prod()-1) monthly_returns710 = strategy710.groupby(pd.TimeGrouper(freq='M')).agg(lambda df:(1+df).prod()-1) sharpe510 = strategy510.mean()/strategy510.std()*math.sqrt(252) sharpe710 = strategy710.mean()/strategy710.std()*math.sqrt(252) sharpe3510 = strategy3510.mean()/strategy3510.std()*math.sqrt(252)