import cvxpy import datetime import math import numpy as np import pandas as pd from pandas.tseries.offsets import BDay from arch import arch_model from db import dbengine, dbconn from scipy.interpolate import interp1d from analytics import Index, ForwardIndex from analytics.index_data import index_returns serenitasdb = dbengine('serenitasdb') def realized_vol(index, series, tenor='5yr', date=None, years=None, return_type='spread'): """computes the realized spread volatility""" if date is None: if years is None: raise ValueError("need to provide at least one of date or years") date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() returns = index_returns(index=index, series=series, tenor=tenor, years=None).dropna() # GARCH(1,1) volatility process with constant mean, scale to help with fitting scale = 10 am = arch_model(scale * returns[return_type+'_return']) res = am.fit(update_freq=0, disp='off') return (res.conditional_volatility * math.sqrt(252)/scale, res) def lr_var(res): r""" computes long run variance of the garch process .. math:: \sigma^2=\frac{\omega}{1-\sum_{i=1}^p \alpha_i + \sum_{i=1}^q \beta_i} """ names = res.model.volatility.parameter_names() ## names[0] is omega, rest is alpha[1],..., alpha[p], beta[1],...,beta[q] var = res.params[names[0]]/(1 - res.params[names[1:]]) return math.sqrt(var * 252) def atm_vol_calc(df, index_type, moneyness): r = np.empty((len(df.index.unique()), 3)) i = 0 index_keys = [] for s, g1 in df.groupby(level='series'): index = Index.from_name(index_type, s, '5yr') for date, g2 in g1.groupby(pd.Grouper(level='quotedate', freq='D')): if not g2.empty: index.trade_date = date.date() for (ref, expiry), g3 in g2.reset_index('expiry').groupby(['ref', 'expiry']): index.ref = ref atm_val = forward_spread = ForwardIndex(index, expiry, False).forward_spread otm_val = atm_val * (1 + moneyness) if index._quote_is_price: index.spread = atm_val atm_val = index.price index.spread = otm_val otm_val = index.price for quotedate, v in g3.groupby(level='quotedate'): f = interp1d(v.strike.values, v.vol.values, fill_value='extrapolate') r[i, 0] = forward_spread r[i, 1:] = f([atm_val, otm_val]) i += 1 index_keys.append((quotedate, expiry, s)) df = pd.DataFrame(data=r, index=pd.MultiIndex.from_tuples(index_keys, names=['quotedate', 'expiry', 'series']), columns=['forward_spread', 'atm_vol', 'otm_vol']) df['T'] = df.index.get_level_values('expiry').values.astype('datetime64[D]') - \ df.index.get_level_values('quotedate').values.astype('datetime64[D]') df['T'] = df['T'].dt.days / 365 return df def atm_vol(index, date, series=None, moneyness=0.2): extra_filter = '' params = (index.upper(), date) if series: extra_filter = ' AND series=%s' params = params + (series,) sql_str = "SELECT * from swaption_ref_quotes JOIN swaption_quotes " \ "USING (quotedate, index, series, expiry) WHERE index=%s " \ f"and quotedate>=%s {extra_filter} ORDER BY quotedate ASC" df = pd.read_sql_query(sql_str, serenitasdb, params=params) df.quotedate = pd.to_datetime(df.quotedate, utc=True).dt.tz_convert('America/New_York') df = df.set_index(['quotedate', 'index', 'series', 'expiry']) df = df.groupby(level=['quotedate', 'index', 'series', 'expiry']).filter(lambda x: len(x)>2) return atm_vol_calc(df, index, moneyness) def rolling_vol(df, col='atm_vol', term=[3]): """compute the rolling volatility for various terms""" df = df.reset_index(level=['expiry', 'series']) df = df.groupby(df.index).filter(lambda x: len(x)>2) def aux(s, col, term): k = s.index[0] f = interp1d(s.expiry.values.astype('float'), s[col].values, fill_value='extrapolate') x = np.array([(k + pd.DateOffset(months=t)).to_datetime64().astype('float') \ for t in term]) return pd.Series(f(x), index=[str(t)+'m' for t in term]) df = df.groupby(level='quotedate').apply(aux, col, term) # MS quotes don't have fwdspread so they end up as NA return df.dropna() def vol_var(percentile=0.975, index='IG', start_date=datetime.date(2014, 6, 11)): """compute lo and hi percentiles of atm volatility daily change Probably overestimates: - we don't check that the quotes come from the same dealer - we should group it by series """ df = atm_vol(index, start_date) df = rolling_vol(df, term=[1,2,3]) df = df.sort_index() df = df.groupby(df.index.date).nth(-1) return df.diff().quantile([1-percentile, percentile]) def get_index_spread(index, series, date, conn): with conn.cursor() as c: c.execute("SELECT closespread from index_quotes " \ "WHERE index=%s and series=%s and date=%s and tenor='5yr'", (index, series, date)) try: spread, = c.fetchone() except TypeError: spread = None conn.commit() return spread def get_index_ref(index, series, date, expiry, conn): with conn.cursor() as c: c.execute("SELECT ref, fwdspread from swaption_ref_quotes " \ "WHERE index=%s and series=%s and quotedate::date=%s "\ "AND expiry=%s ORDER BY quotedate desc", (index, series, date, expiry)) try: ref, fwdspread = c.fetchone() except TypeError: ref, fwdspread = None, None conn.commit() return ref, fwdspread def get_option_pnl(strike, expiry, index, series, start_date, engine): for s in [strike, strike+2.5, strike-2.5, strike+5]: df = pd.read_sql_query("SELECT quotedate, (pay_bid+pay_offer)/2 AS pay_mid, " \ "(rec_bid+rec_offer)/2 AS rec_mid FROM swaption_quotes " \ "WHERE strike=%s and expiry=%s and index=%s and series=%s" \ "and quotedate>=%s", engine, params=(s, expiry, index, series, start_date), index_col='quotedate', parse_dates=['quotedate']) if not df.empty and df.index[0].date() == start_date: strike = s break else: raise ValueError("Couldn't find data starting from that date") if not pd.api.types.is_datetime64tz_dtype(df.index): df.index = df.index.tz_localize('utc') df = df.groupby(df.index.normalize()).nth(-1) if expiry < datetime.date.today(): spread = get_index_spread(index, series, expiry, engine.raw_connection()) underlying = Index.from_name(index, series, "5yr", expiry, 1e4) underlying.spread = spread pv = underlying.pv underlying.spread = strike if spread > strike: pay_mid, rec_mid = pv-underlying.pv, 0 else: pay_mid, rec_mid = 0, underlying.pv - pv pv = underlying.pv df = df.append(pd.DataFrame([[pay_mid, rec_mid]], columns=['pay_mid', 'rec_mid'], index=[pd.Timestamp(expiry, tz='UTC')])) return df, strike def sell_vol_strategy(index="IG", months=3): engine = dbengine('serenitasdb') conn = engine.raw_connection() with conn.cursor() as c1, conn.cursor() as c2: c1.execute("SELECT DISTINCT series, expiry FROM " \ "swaption_quotes ORDER BY expiry, series desc") d = {} for series, expiry in c1: start_date = BDay().rollback(expiry - pd.DateOffset(months=months)).date() if start_date > datetime.date.today(): break c2.execute("SELECT max(quotedate::date) FROM swaption_quotes WHERE " \ "index=%s AND series=%s AND expiry=%s AND quotedate<=%s", (index, series, expiry, start_date)) actual_start_date, = c2.fetchone() if actual_start_date is None or (start_date - actual_start_date).days > 5: continue ref, fwdspread = get_index_ref(index, series, actual_start_date, expiry, conn) if fwdspread is None: fwdspread = ref + months / 50 #TODO: use actual values strike = round(fwdspread/2.5) * 2.5 pnl, strike = get_option_pnl(strike, expiry, index, series, actual_start_date, engine) d[(series, strike, expiry)] = pnl conn.commit() return d def aggregate_trades(d): r = pd.Series() for v in d.values(): r = r.add(-v.sum(1).diff().dropna(), fill_value=0) return r def compute_allocation(df): Sigma = df.cov().values gamma = cvxpy.Parameter(sign='positive') mu = df.mean().values w = cvxpy.Variable(3) ret = mu.T*w risk = cvxpy.quad_form(w, Sigma) prob = cvxpy.Problem(cvxpy.Maximize(ret - gamma * risk), [cvxpy.sum_entries(w) == 1, w >= -2, w <= 2]) gamma_x = np.linspace(0, 0.02, 500) W = np.empty((3, gamma_x.size)) for i, val in enumerate(gamma_x): gamma.value = val prob.solve() W[:,i] = np.asarray(w.value).squeeze() fund_return = mu @ W fund_vol= np.array([math.sqrt(W[:,i] @ Sigma @W[:,i]) for i in range(gamma_x.size)]) return (W, fund_return, fund_vol) if __name__ == "__main__": # d1 = sell_vol_strategy(months=1) # d2 = sell_vol_strategy(months=2) # d3 = sell_vol_strategy(months=3) # all_tenors = pd.concat([aggregate_trades(d) for d in [d1, d2, d3]], axis=1) # all_tenors.columns = ['1m', '2m', '3m'] # all_tenors['optimal'] = ((1.2*all_tenors['1m']). # sub(1.2*all_tenors['2m'], fill_value=0). # add(all_tenors['3m'], fill_value=0)) import datetime import statsmodels.formula.api as smf ## HY df = atm_vol("HY", datetime.date(2017, 3, 20)) df['forward_spread'] *= 1e-4 df['log_forward_spread'] = np.log(df['forward_spread']) df['log_atm_vol'] = np.log(df['atm_vol']) df_hy28 = df.xs(28, level='series') results = smf.ols('log_atm_vol ~ log_forward_spread + T', data=df_hy28).fit() beta_hy28 = 1 + results.params.log_forward_spread print(results.summary()) ## IG df = atm_vol("IG", datetime.date(2017, 3, 20)) df['forward_spread'] *= 1e-4 df['log_forward_spread'] = np.log(df['forward_spread']) df['log_atm_vol'] = np.log(df['atm_vol']) df_ig28 = df.xs(28, level='series') results = smf.ols('log_atm_vol ~ log_forward_spread + T', data=df_ig28).fit() beta_ig28 = 1 + results.params.log_forward_spread print(results.summary())