from analytics.cms_spread import ( quantlib_model, globeop_model, build_spread_index, VolatilityType, get_swaption_vol_data, get_swaption_vol_matrix) from yieldcurve import YC import pandas as pd from quantlib.time.api import Date, Period, Years, Days, ModifiedFollowing from quantlib.cashflows.cms_coupon import CmsCoupon from quantlib.experimental.coupons.cms_spread_coupon import ( CmsSpreadCoupon, CappedFlooredCmsSpreadCoupon) import datetime import math # swap_index_30y2y, yc = build_spread_index(30, 2) # cap = 0.00758 # corr = 0.8 # r = [] # maturity = pd.Timestamp("2020-01-19") # today = pd.Timestamp.today() # for d in pd.bdate_range("2018-01-19", today, closed="left", normalize=True): # d = pd.Timestamp("2018-01-19") # yc.link_to(YC(evaluation_date=d.date())) # yc.extrapolation = True # if d == pd.Timestamp("2018-02-16"): # continue # capped_floored_cms_spread_coupon_ln = \ # quantlib_model(d, swap_index_30y2y, yc, cap, corr, maturity) # rate1 = capped_floored_cms_spread_coupon_ln.rate # cms_spread_coupon_n = quantlib_model(d, swap_index_30y2y, yc, cap, corr, maturity, # VolatilityType.Normal) # rate2 = cms_spread_coupon_n.rate # rate3 = globeop_model(d, swap_index_30y2y, yc, cap, corr - 0.075, maturity) # # df = pd.DataFrame(r, columns=['date', 'QL_ln', 'QL_n', 'Globeop']).set_index('date') # try to get convexity adjustement from quantlib.indexes.swap.usd_libor_swap import UsdLiborSwapIsdaFixAm from quantlib.cashflows.conundrum_pricer import AnalyticHaganPricer, YieldCurveModel from quantlib.quotes import SimpleQuote from quantlib.time.api import Actual365Fixed # trade_date = datetime.date(2018, 1, 19) trade_date = datetime.date(2018, 8, 23) maturity = Date.from_datetime(trade_date) + Period(2, Years) spread_index, yc = build_spread_index(30, 2) yc.link_to(YC(evaluation_date=trade_date)) yc.extrapolation = True fixing_date = spread_index.fixing_calendar.adjust(maturity, ModifiedFollowing) payment_date = spread_index.fixing_calendar.advance(fixing_date, 2, Days) accrued_end_date = payment_date accrued_start_date = accrued_end_date - Period(1, Years) cap = 0.00758 cms2y30y_cap = CappedFlooredCmsSpreadCoupon( payment_date, 100_000_000, start_date=accrued_start_date, end_date=accrued_end_date, fixing_days=spread_index.fixing_days, index=spread_index, gearing=1., spread=-cap, floor=0., day_counter=Actual365Fixed(), is_in_arrears=True) date, surf = get_swaption_vol_data(date=trade_date, vol_type=VolatilityType.ShiftedLognormal) atm_vol = get_swaption_vol_matrix(trade_date, surf) μ = SimpleQuote(0.1) from quantlib.experimental.coupons.lognormal_cmsspread_pricer import LognormalCmsSpreadPricer corr = SimpleQuote(0.8) cms_pricer = AnalyticHaganPricer(atm_vol, YieldCurveModel.Standard, μ) spread_pricer = LognormalCmsSpreadPricer( cms_pricer, corr, integration_points=20) cms2y30y_cap.set_pricer(spread_pricer) fixing_time = atm_vol.time_from_reference(cms2y30y_cap.fixing_date) cms30y = CmsCoupon(payment_date, 100_000_000, start_date=accrued_start_date, end_date=accrued_end_date, fixing_days=2, index=spread_index.swap_index1, is_in_arrears=True) cms2y = CmsCoupon(payment_date, 100_000_000, start_date=accrued_start_date, end_date=accrued_end_date, fixing_days=2, index=spread_index.swap_index2, is_in_arrears=True) cms30y.set_pricer(cms_pricer) cms2y.set_pricer(cms_pricer) s1 = cms30y.index_fixing s2 = cms2y.index_fixing adjusted1 = cms30y.rate adjusted2 = cms2y.rate import math T_alpha = atm_vol.time_from_reference(cms2y30y_cap.fixing_date) mu1 = 1 / T_alpha * math.log(adjusted1 / s1) mu2 = 1 / T_alpha * math.log(adjusted2 / s2) vol1 = atm_vol.volatility(cms2y.fixing_date, spread_index.swap_index1.tenor, s1) vol2 = atm_vol.volatility(cms30y.fixing_date, spread_index.swap_index2.tenor, s2) mu_x = (mu1 - 0.5 * vol1 ** 2) * T_alpha mu_y = (mu2 - 0.5 * vol2 ** 2) * T_alpha sigma_x = vol1 * math.sqrt(T_alpha) sigma_y = vol2 * math.sqrt(T_alpha) from scipy.special import roots_hermitenorm from analytics.cms_spread import h_call, h_put import numpy as np x, w = roots_hermitenorm(16) val_put = 1/math.sqrt(2*math.pi) * np.dot(w, h_put(x, cap, s1, s2, mu_x, mu_y, sigma_x, sigma_y, corr.value)) val_call = 1/math.sqrt(2*math.pi) * np.dot(w, h_call(x, cap, s1, s2, mu_x, mu_y, sigma_x, sigma_y, corr.value)) print(cms2y30y_cap.rate, cms2y30y_cap.underlying.rate + val_put, val_call)