import datetime from bbg_helpers import init_bbg_session, retrieve_data, BBG_IP from analytics.utils import tenor_t import pandas as pd spreads = [-200, -100, -50, -25, 25, 50, 100, 200] spread_letter = {200: 'D', 100: 'C', 75: 'G', 50: 'B', 25: 'A'} def ticker(expiry, tenor, spread, vol_type, source): if spread < 0: spread_mapping = "R" + spread_letter[abs(spread)] else: spread_mapping = "P" + spread_letter[abs(spread)] if vol_type == "V": return f"US{spread_mapping}{expiry:0>2}{tenor:0>2} {source} Curncy" elif vol_type == "N": return f"USS{spread_mapping}{expiry}{tenor:0>2} {source} Curncy" # Normal vol # sources GFIS, CMPN expiry = ["C", "F", 1, 2, 3, 4, 5, 7, 10, 20, 30] tenor = [1, 2, 5, 10, 20, 30] tickers = [] for s in spreads: for e in expiry: for t in tenor: tickers.append(ticker(e, t, s, "V", "GFIS")) with init_bbg_session(BBG_IP) as session: data = retrieve_data(session, tickers, ['PX_LAST'], start_date=datetime.date(2018, 1, 1)) df = pd.concat(data, axis=1) df.columns = df.columns.droplevel(1) col = df.columns.to_series().str.extract("US([RP])([DCGBA])(\d[0-9ACF])(\d{2})") pos_dict = {v: k for k, v in spread_letter.items()} neg_dict = {v: -k for k, v in spread_letter.items()} col.loc[col[0] == 'P', 1] = col.loc[col[0] == 'P', 1].map(pos_dict) col.loc[col[0] == 'R', 1] = col.loc[col[0] == 'R', 1].map(neg_dict) def to_tenor(s): d = {'A': '1m', 'C': '3m', 'F': '6m'} return d.get(s, s + 'yr') col[2] = col[2].str.lstrip("0").map(to_tenor).astype(tenor_t) col[3] = col[3].str.lstrip("0").map(to_tenor).astype(tenor_t) df.columns = pd.MultiIndex.from_arrays([col[1], col[2], col[3]], names=['spread', 'expiry', 'tenor'])