import datetime import pandas as pd import re from env import DAILY_DIR from utils.db import dbconn def gs_navs(): d = {} for fname in (DAILY_DIR / "GS_reports").glob("Trade_Detail*.xls"): try: df = pd.read_excel(fname, skiprows=9, skipfooter=77, index_col="Trade Id") except ValueError: continue df["Trade Date"] = pd.to_datetime(df["Trade Date"]) df = df[["Trade Date", "Buy/Sell", "Notional (USD)", "NPV (USD)"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] name = fname.name.replace("9972734", "") m = re.match(r"[^\d]*(\d{2}_.{3}_\d{4})", name) if m: date_string, = m.groups() date = datetime.datetime.strptime(date_string, "%d_%b_%Y") d[date] = df df = pd.concat(d) # nav is from Goldman's point of view df.nav *= -1.0 return df def ms_navs(): d = {} for fname in (DAILY_DIR / "MS_reports").glob("Trade_Detail*.xls"): df = pd.read_excel(fname, index_col="trade_id") df.trade_date = pd.to_datetime(df.trade_date) df = df[ ["trade_date", "pay_rec", "notional_in_trade_ccy", "exposure_in_rpt_ccy"] ] df.columns = ["trade_date", "buy/sell", "notional", "nav"] m = re.match(r"[^\d]*(\d{8})", fname.name) if m: date_string, = m.groups() date = datetime.datetime.strptime(date_string, "%Y%m%d") d[date] = df return pd.concat(d) def citi_navs(): l = [] for fname in (DAILY_DIR / "CITI_reports").glob("262966_Portfolio_*.xlsx"): df = pd.read_excel( fname, skiprows=6, skipfooter=2, parse_dates=["Trade Date", "Value Date"] ) df = df.dropna(subset=["Operations File"]).set_index( ["Value Date", "Operations File"] ) df = df[["Trade Date", "Party Position", "Notional", "Market Value"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] l.append(df) df = pd.concat(l) # nav is from Citi's point of view df.nav *= -1.0 return df def baml_navs(): d = {} for fname in (DAILY_DIR / "BAML_ISDA_reports").glob( "Interest Rates Trade Summary_*.xls" ): date = datetime.datetime.strptime(fname.stem.split("_")[1], "%d-%b-%Y") df = pd.read_excel(fname, skiprows=6, nrows=1) df = df.set_index("Trade ID") df = df[["Trade Date", "Flow Direction", "Notional", "MTM(USD)"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] d[date] = df return pd.concat(d) if __name__ == "__main__": for cp in ["MS", "CITI", "GS", "BAML"]: df = globals()[f"{cp.lower()}_navs"]() with dbconn("dawndb") as conn: with conn.cursor() as c: for k, v in df[["nav"]].iterrows(): c.execute( "INSERT INTO external_marks_deriv " "VALUES(%s, %s, %s, %s) ON CONFLICT DO NOTHING", (*k, float(v), cp), )