import datetime import pandas as pd import re from env import DAILY_DIR from collateral.baml_isda import baml_load_excel def gs_navs(date: datetime.date = None): d = {} date_str = date.strftime("%d_%b_%Y") if date else "" for fname in (DAILY_DIR / "GS_reports").glob(f"Trade_Detail*{date_str}*.xls"): try: df = pd.read_excel(fname, skiprows=9, skipfooter=77, index_col="Trade Id") except ValueError: continue df = df.dropna(subset=["GS Entity"]) df["Trade Date"] = pd.to_datetime(df["Trade Date"]) df = df[["Trade Date", "Buy/Sell", "Notional (USD)", "NPV (USD)"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] name = fname.name.replace("9972734", "") if m := re.match(r"[^\d]*(\d{2}_.{3}_\d{4})", name): date_string, = m.groups() date = datetime.datetime.strptime(date_string, "%d_%b_%Y") d[date] = df df = pd.concat(d) # nav is from Goldman's point of view df.nav *= -1.0 return df def ms_navs(date: datetime.date = None): d = {} date_str = date.strftime("%Y%m%d") if date else "*" for fname in (DAILY_DIR / "MS_reports").glob(f"Trade_Detail_{date_str}.xls"): df = pd.read_excel(fname, index_col="trade_id") df.trade_date = pd.to_datetime(df.trade_date) df = df[ ["trade_date", "pay_rec", "notional_in_trade_ccy", "exposure_in_rpt_ccy"] ] df.columns = ["trade_date", "buy/sell", "notional", "nav"] if m := re.match(r"[^\d]*(\d{8})", fname.name): date_string, = m.groups() date = datetime.datetime.strptime(date_string, "%Y%m%d") d[date] = df return pd.concat(d) def citi_navs(date: datetime.date = None): d = {} glob_str = date.strftime("%Y%m%d*") if date else "*" for fname in (DAILY_DIR / "CITI_reports").glob(f"262966_Portfolio_{glob_str}.xlsx"): date_parsed = datetime.datetime.strptime( fname.stem.rsplit("_", 1)[1][:-3], "%Y%m%d%H%M%S%f" ) df = pd.read_excel( fname, skiprows=6, skipfooter=2, parse_dates=["Trade Date", "Value Date"] ) df = df.dropna(subset=["Operations File"]).set_index( ["Value Date", "Operations File"] ) df = df[["Trade Date", "Party Position", "Notional", "Market Value"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] d[date_parsed] = df # there can be multiple files per day, we take the latest one df = ( pd.concat(d) .sort_index() .groupby(level=["Value Date", "Operations File"]) .last() ) # nav is from Citi's point of view df.nav *= -1.0 return df def baml_navs(date: datetime.date = None): d = {} glob_str = date.strftime("%d-%b-%Y") if date else "*" for fname in (DAILY_DIR / "BAML_ISDA_reports").glob( f"Interest Rates Trade Summary_{glob_str}.xls" ): date = datetime.datetime.strptime(fname.stem.split("_")[1], "%d-%b-%Y") df = baml_load_excel(fname) df = df.set_index("Trade ID") df = df[["Trade Date", "Flow Direction", "Notional", "MTM(USD)"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] d[date] = df return pd.concat(d) def bnp_navs(date: datetime.date = None): d = {} date_str = date.strftime("%Y%m%d") if date else "" for fname in (DAILY_DIR / "BNP_reports").glob(f"Exposure*{date_str}.XLS"): try: df = pd.read_excel(fname, skiprows=7) except ValueError: continue df["Trade Ref"] = df["Trade Ref"].str.replace("MBO-", "") df = df.set_index("Trade Ref") df["Trade Date"] = pd.to_datetime(df["Trade Date"], dayfirst=True) df = df[["Trade Date", "Buy/Sell", "Notional 1", "Exposure Amount (Agmt Ccy)"]] df.columns = ["trade_date", "buy/sell", "notional", "nav"] d[datetime.datetime.strptime(fname.stem[-8:], "%Y%m%d").date()] = df df = pd.concat(d) # nav is from BNP's point of view df.nav *= -1.0 return df # def bnp_navs_old(date: datetime.date = None): # d = {} # date_str = date.strftime("%d%b%Y") if date else "" # for fname in (DAILY_DIR / "BNP_reports").glob(f"SERENITAS*0_*{date_str}.csv"): # try: # df = pd.read_csv(fname) # except ValueError: # continue # df = df.set_index("Contract") # df["COB Date"] = pd.to_datetime(df["COB Date"]) # df = df[["COB Date", "B/S", "Notional", "Reval PV"]] # df.columns = ["trade_date", "buy/sell", "notional", "nav"] # d[datetime.datetime.strptime(fname.name.split("_")[3], "%d%b%Y").date()] = df # df = pd.concat(d) # return df if __name__ == "__main__": import argparse import logging from utils.db import dbconn from pandas.tseries.offsets import BDay parser = argparse.ArgumentParser() parser.add_argument( "date", type=datetime.datetime.fromisoformat, nargs="?", default=datetime.date.today(), ) parser.add_argument( "-a", "--all", action="store_true", default=False, help="download everything" ) parser.add_argument( "-d", "--debug", action="store_true", default=False, help="more verbose logging" ) args = parser.parse_args() date = None if args.all else args.date logging.basicConfig() logger = logging.getLogger("external_marks") logger.setLevel(logging.DEBUG if args.debug else logging.INFO) for cp in ["MS", "CITI", "GS", "BAML", "BNP"]: logger.info(cp) if date and cp != "CITI": date_arg = (date - BDay()).date() else: date_arg = date try: df = globals()[f"{cp.lower()}_navs"](date_arg) except ValueError: continue logger.debug(df) with dbconn("dawndb") as conn: with conn.cursor() as c: for k, v in df[["nav"]].iterrows(): c.execute( "INSERT INTO external_marks_deriv " "VALUES(%s, %s, %s, %s) ON CONFLICT DO NOTHING", (*k, float(v), cp), )