from glob import iglob import os import pandas as pd import datetime from db import dbengine import load_globeop_report as load_globeop def get_monthly_pnl(): sql_string = "SELECT * FROM pnl_reports" df_pnl = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['date']) df_pnl = df_pnl.set_index('date') zero_factor = df_pnl[df_pnl.invid.str.match('^.{9}_A$')]['invid'].unique() df_pnl.invid = df_pnl.invid.apply(lambda x: x[:9] if x in zero_factor.tolist() else x) pnl_cols = ['bookunrealmtm', 'bookrealmtm', 'bookrealincome', 'bookunrealincome', 'totalbookpl'] df_pnl = df_pnl.reset_index().groupby(['date','invid']).sum().reset_index('invid') df_pnl = df_pnl.groupby('invid').resample('M').last()[['mtd'+col for col in pnl_cols]] df_pnl.index.names = ['identifier','date'] return df_pnl.reset_index() def curr_port_PNL(date = datetime.date.today(), asset_class='Subprime'): sql_string = "SELECT * FROM risk_positions(%s, %s) WHERE notional > 0" df_positions = pd.read_sql_query(sql_string, dbengine('dawndb'),params = [date, asset_class]) df_pnl = get_monthly_pnl() df_all = df_positions.merge(df_pnl.groupby('identifier').sum().reset_index(), on=['identifier']) return df_all def check_valuation(): sql_string = "SELECT * FROM valuation_reports" df_val = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['periodenddate']) nav = df_val[df_val.fund == 'SERCGMAST'].groupby('periodenddate')['endbooknav'].sum() return nav.resample('M').last() def trade_performance(): sql_string = "SELECT * FROM bonds" df_trades = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates= ['lastupdate', 'trade_date','settle_date']) df_trades = df_trades[df_trades.asset_class == 'Subprime'] df_pnl = get_monthly_pnl() df_sell = df_trades[df_trades.buysell == False].groupby('identifier').last().reset_index() df_sell.identifier = df_sell.identifier.str[:9] df_buy = df_trades[df_trades.buysell == True].groupby('identifier').last().reset_index() df_all = df_sell.merge(df_pnl.groupby('identifier').sum().reset_index(), on=['identifier']) #now build up the table g = df_buy.groupby('identifier').sum() init_inv = g.principal_payment + g.accrued_payment init_inv.name = 'initialinvestment' first_buy_date = df_buy.groupby('identifier').first().trade_date first_buy_date.name = 'firstbuydate' df_all = df_all.join(init_inv, on='identifier') df_all = df_all.join(first_buy_date, on='identifier') df_all['percent_gain'] = df_all.mtdtotalbookpl / df_all.initialinvestment df_all['days_held'] = df_all.trade_date - df_all.firstbuydate df_all = df_all.sort_values('trade_date', ascending=False) table = pd.DataFrame() #table['average_days_held'] = df_all.days_held.mean() return df_all if __name__=='__main__': nav = check_valuation() df_pnl = trade_performance()