import os from common import root import csv import datetime from db import serenitasdb import re, sys from pandas.tseries.offsets import BDay import pandas as pd import numpy as np import psycopg2 from sqlalchemy import create_engine def convert(x): try: return float(x[:-1]) except ValueError: return None index_list = ['HY9', 'HY10', 'HY15', 'HY17', 'HY19', 'HY21', 'HY22', 'HY23', 'IG9', 'IG19', 'IG21', 'IG22', 'IG23', 'XO22', 'EU9', 'EU19', 'EU21', 'EU22'] DOC_CLAUSE_MAPPING14 = {'Full Restructuring': 'MM14', 'No Restructuring': 'XR14', 'Modified Modified Restructurin': 'MM14'} DOC_CLAUSE_MAPPING = {'Full Restructuring': 'MM', 'No Restructuring': 'XR', 'Modified Modified Restructurin': 'MM'} def get_markit_bbg_mapping(database, basketid_list, workdate): if workdate>=datetime.date(2014, 9, 19): doc_clause_mapping = DOC_CLAUSE_MAPPING14 else: doc_clause_mapping = DOC_CLAUSE_MAPPING markit_bbg_mapping = {} all_tickers = set([]) with database.cursor() as c: c.execute("SELECT markit_ticker, markit_tier, spread, currency, cds_curve, " \ " doc_clause FROM historical_cds_issuers(%s) where index_list && %s", (workdate, basketid_list)) for line in c: all_tickers.add((line['markit_ticker'], line['markit_tier'])) key = (line['markit_ticker'], line['markit_tier'], line['currency'], doc_clause_mapping[line['doc_clause']], float(line['spread'])/10000) markit_bbg_mapping[key] = line['cds_curve'] database.commit() return (all_tickers, markit_bbg_mapping) def get_basketids(database, index_list, workdate): r = [] with database.cursor() as c: for index in index_list: c.execute("SELECT * FROM nameToBasketID(%s, %s)", (index, workdate)) r.append(c.fetchone()[0]) database.commit() return r def get_current_tickers(database, workdate): basketid_list = get_basketids(database, index_list, workdate) return get_markit_bbg_mapping(database, basketid_list, workdate) def insert_cds(database, workdate): all_tickers, markit_bbg_mapping = get_current_tickers(database, workdate) filename = "cds eod {0}.csv".format(datetime.datetime.strftime(workdate, "%Y%m%d")) colnames = ['Upfront'+tenor for tenor in ['6m', '1y', '2y', '3y', '4y', '5y', '7y', '10y']] sqlstr = "INSERT INTO cds_quotes(date, curve_ticker, upfrontbid, upfrontask," \ "runningbid, runningask, source, recovery) VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" tickers_found = set([]) with database.cursor() as c: c.execute("DELETE from cds_quotes where date=%s", (workdate,)) database.commit() with open(os.path.join(root, "Tranche_data", "CDS", filename)) as fh: csvreader = csv.DictReader(fh) with database.cursor() as c: for line in csvreader: k = (line['Ticker'], line['Tier'], line['Ccy'], line['DocClause'], float(line['RunningCoupon'])) if k in markit_bbg_mapping: c.executemany(sqlstr, [(workdate, t, convert(line[colnames[i]]), convert(line[colnames[i]]), float(line['RunningCoupon'])*10000, float(line['RunningCoupon'])*10000, 'MKIT', convert(line['RealRecovery'])/100) for i, t in enumerate(markit_bbg_mapping[k])]) tickers_found.add((line['Ticker'], line['Tier'])) database.commit() print(all_tickers-tickers_found) def insert_index(engine, workdate): basedir = os.path.join(root, 'Tranche_data', 'Composite_reports') filenames = [os.path.join(basedir, f) for f in os.listdir(basedir) if 'Indices' in f] name_mapping = {"CDXNAHY":"HY", "CDXNAIG":"IG",'iTraxx Eur': "EU", 'iTraxx Eur Xover': "XO"} cols = ['closeprice', 'closespread', 'modelprice', 'modelspread'] colmapping={'Date':'date', 'Name': 'index', 'Series': 'series', 'Version': 'version', 'Term': 'tenor', 'Composite Price': 'closeprice', 'Composite Spread': 'closespread', 'Model Price': 'modelprice', 'Model Spread': 'modelspread'} ext_cols = ['date', 'index', 'series', 'version', 'tenor'] + cols + \ ['adjcloseprice', 'adjmodelprice'] for f in filenames: if datetime.datetime.fromtimestamp(os.path.getmtime(f)).date()==(workdate+BDay(1)).date(): data = pd.read_csv(f, skiprows=2, parse_dates=[0,7]) data.rename(columns=colmapping, inplace=True) data.dropna(subset=['closeprice'], inplace=True) data[cols] = data[cols].applymap(lambda x: float(x[:-1]) if x.endswith('%') else x) data['tenor'] = data['tenor'].apply(lambda x: x.lower()+'r') data['index'] = data['index'].apply(lambda x: name_mapping[x] if x in name_mapping else np.NaN) data = data.dropna(subset=['index']) data.set_index('index', drop=False, inplace=True) data['closespread'] *= 100 data['modelspread'] *= 100 ## we renumbered the version for HY9, 10 and 11 data.loc[data.series.isin([9, 10, 11]) & (data.index=='HY'),'version'] -= 3 data['adjcloseprice'] = data['closeprice'] data['adjmodelprice'] = data['modelprice'] data[ext_cols].to_sql('index_quotes', engine, if_exists='append', index=False) if __name__=="__main__": if len(sys.argv)>=2: workdate = datetime.datetime.strptime(sys.argv[1], "%Y-%m-%d") else: workdate = datetime.datetime.today()-BDay(1) workdate = workdate.date() engine = create_engine('postgresql://serenitas_user:Serenitas1@debian/serenitasdb') insert_cds(serenitasdb, workdate) # insert_index(engine, workdate) serenitasdb.close() # for f in os.listdir(os.path.join(root, "Tranche_data", "CDS")): # if f.endswith("csv"): # workdate = datetime.datetime.strptime(f.split(" ")[2].split(".")[0], "%Y%m%d") # workdate = workdate.date() # insert_cds(serenitasdb, workdate) # serenitasdb.close()