from db import dbengine, dbconn from dates import bond_cal import datetime import pandas as pd serenitasdb = dbengine('serenitasdb') def insert_quotes(): """ backpopulate some version i+1 quotes one day before they start trading so that we get continuous time series when we compute returns. We can also do it in sql as follows: INSERT INTO index_quotes(date, index, series, version, tenor, closeprice) SELECT date, index, series, version+1, tenor, (factor1*closeprice-100*0.355)/factor2 FROM index_quotes WHERE index='HY' and series=23 and date='2017-02-02' """ dates = pd.DatetimeIndex(['2014-05-21', '2015-02-19', '2015-03-05','2015-06-23']) df = pd.read_sql_query("SELECT DISTINCT ON (date) * FROM index_quotes " \ "WHERE index='HY' AND tenor='5yr' " \ "ORDER BY date, series DESC, version DESC", serenitasdb, parse_dates=['date'], index_col=['date']) df = df.loc[dates] for tup in df.itertuples(): result = serenitasdb.execute("SELECT indexfactor, cumulativeloss FROM index_version " \ "WHERE index = 'HY' AND series=%s AND version in (%s, %s)" \ "ORDER BY version", (tup.series, tup.version, tup.version+1)) factor1, cumloss1 = result.fetchone() factor2, cumloss2 = result.fetchone() recovery = 1-(cumloss2-cumloss1) version2_price = (factor1 * tup.closeprice - 100*recovery)/factor2 print(version2_price) serenitasdb.execute("INSERT INTO index_quotes(date, index, series, version, tenor, closeprice)" \ "VALUES(%s, %s, %s, %s, %s, %s)", (tup.Index, 'HY', tup.series, tup.version+1, tup.tenor, version2_price)) def get_index_quotes(index=None, series=None, tenor=None, from_date=None, years=3): args = locals().copy() if args['years'] is not None: args['date'] = (pd.Timestamp.now() - pd.DateOffset(years=years)).date() del args['years'] if args['from_date']: args['date'] = args['from_date'] del args['from_date'] def make_str(key, val): if isinstance(val, list): op = "IN" return "{} IN %({})s".format(key, key) elif isinstance(val, datetime.date): op = ">=" else: op = "=" return "{} {} %({})s".format(key, op, key) where_clause = " AND ".join(make_str(k, v) for k, v in args.items() if v is not None) sql_str = "SELECT * FROM index_quotes" if where_clause: sql_str = " WHERE ".join([sql_str, where_clause]) def make_params(args): return {k: tuple(v) if isinstance(v, list) else v for k, v in args.items() if v is not None} df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date', 'index', 'series', 'version', 'tenor'], params = make_params(args)) df.sort_index(inplace=True) ## get rid of US holidays dates = df.index.levels[0] if index in ['IG', 'HY']: holidays = bond_cal().holidays(start=dates[0], end=dates[-1]) df = df.loc(axis=0)[dates.difference(holidays),:,:] return df def index_returns(df=None, index=None, series=None, tenor=None, from_date=None, years=3): """computes daily spreads and price returns Parameters ---------- df : pandas.DataFrame index : str or List[str], optional index type, one of 'IG', 'HY', 'EU', 'XO' series : int or List[int], optional tenor : str or List[str], optional tenor in years e.g: '3yr', '5yr' date : datetime.date, optional starting date years : int, optional limits many years do we go back starting from today. """ if df is None: df = get_index_quotes(index, series, tenor, from_date, years) df = (df. groupby(level=['index', 'series', 'tenor', 'version']) [['closespread','closeprice']]. pct_change()) df.columns = ['spread_return', 'price_return'] df = df.groupby(level=['date', 'index', 'series', 'tenor']).nth(0) coupon_data = pd.read_sql_query("SELECT index, series, tenor, coupon FROM " \ "index_maturity WHERE coupon is NOT NULL", serenitasdb, index_col=['index', 'series', 'tenor']) def add_accrued(df): coupon = coupon_data.loc[df.index[0][1:],'coupon'] * 1e-4 accrued = (df.index.levels[0].to_series().diff(). astype('timedelta64[D]')/360 * coupon) return df + accrued df['price_return'] = (df. groupby(level=['index', 'series', 'tenor'])['price_return']. transform(add_accrued)) return df