from analytics import CreditIndex from utils.db import serenitas_pool import numpy as np import pandas as pd def load_sheet(index, series): df = pd.read_excel("/home/serenitas/CorpCDOs/Tranche_data/USTrancheClientFile11072019.XLS", sheet_name=f'5Y {index.upper()}{series}', skiprows=[0, 1, 2, 3, 4]) sql_str = ("INSERT INTO tranche_quotes(" "quotedate, index, series, version, tenor, attach, detach, " "trancheupfrontmid, trancherunningmid, indexrefprice, " "tranchedelta, corratdetachment, quotesource) " f"VALUES({','.join(['%s'] * 13)})") df = df.set_index("Date") if index == "HY": cols = [0., 0.15, 0.25, 0.35] else: cols = [0., 0.03, 0.07, 0.15] if index == "HY": df_upfront = df[['0% - 15%', '15% - 25%', '25% - 35%', '35% - 100%']] else: df_upfront = df[['0-3%', '3-7%', '7-15%', '15-100%']] df_upfront.columns = cols df_upfront = df_upfront.stack() df_upfront.name = 'upfront' df_delta = df[['Delta', 'Delta.1', 'Delta.2', 'Delta.3']] df_delta.columns = cols df_delta = df_delta.stack() df_delta.name = 'delta' df_corr = df[['Correlation', 'Correlation.1', 'Correlation.2']] df_corr.columns = cols[:-1] df_corr = df_corr.stack() df_corr.name = 'correlation' df_detach = pd.DataFrame(np.repeat([cols[1:] + [1.]], len(df.index), 0), index=df.index, columns=cols).stack() df_detach.name='detach' df_merged = pd.concat([df_upfront, df_delta, df_corr, df_detach], axis=1) df_merged.index.names = ['date', 'attach'] if index == "HY": df_merged['price'] = 100. * (1 - df_merged.upfront) else: df_merged['price'] = 100 * df_merged.upfront df_merged = df_merged.reset_index("attach") df_final = df_merged.join(df['Spread (bp)']) df_final = df_final.rename(columns={'Spread (bp)': 'indexspread'}) conn = serenitas_pool.getconn() credit_index = CreditIndex(index, series, "5yr") with conn.cursor() as c: for t in df_final.itertuples(): credit_index.value_date = t.Index.date() credit_index.spread = t.indexspread c.execute(sql_str, (t.Index + pd.DateOffset(hours=17), index, series, credit_index.version, "5yr", int(t.attach * 100), int(t.detach*100), t.price, 500, credit_index.price, t.delta, t.correlation, "MSre")) conn.commit() serenitas_pool.putconn(conn) if __name__ == "__main__": for index in ("IG", "HY"): for series in (25, 27, 29, 31, 33): if index == "IG" and series <= 29: continue load_sheet(index, series)