{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import datetime\n", "import exploration.dispersion as disp\n", "import matplotlib.pyplot as plt\n", "import statsmodels.formula.api as smf\n", "\n", "from analytics.basket_index import MarkitBasketIndex\n", "from analytics import on_the_run\n", "from statsmodels.graphics.regressionplots import plot_fit\n", "from pygam import LinearGAM, s, f, GAM\n", "from utils.db import dbengine\n", "\n", "serenitas_engine = dbengine('serenitasdb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "value_date = (datetime.datetime.today() - pd.offsets.BDay(1)).date()\n", "start_date = datetime.date(2019,9,27)\n", "end_date = datetime.date(2020,1,30)\n", "index_type = 'HY'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Get Gini factor\n", "date_range = pd.bdate_range(end=value_date, freq='1B',periods=52*4)\n", "risk = disp.get_tranche_data(index_type, serenitas_engine)\n", "risk = risk[risk.index.get_level_values(0).isin(date_range)]\n", "gini_model, gini_calc = disp.create_models(risk, use_gini=True, use_log=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "to_plot_gini = gini_calc.xs(0, level='attach').groupby(['date', 'series']).nth(-1)\n", "to_plot_gini['dispersion'].unstack().plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "today = gini_calc.xs([value_date,33], level=['date','series'])\n", "today[['exp_percentage', 'predict_N', 'predict_preN', 'mispricing']]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "to_plot = gini_calc.xs(0, level='attach')['mispricing']\n", "to_plot.reset_index(['index','tenor'], drop=True).unstack().plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plot_fit(gini_model[0], 'np.log(index_duration)')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Run a particular gini scenario\n", "scenario = gini_calc.loc(axis=0)[value_date,33,'HY','5yr',0]\n", "scenario['dispersion'] = .6\n", "scenario_disp = np.exp(gini_model[0].predict(scenario))\n", "mispricing = (scenario['exp_percentage'] - scenario_disp) * \\\n", " scenario['index_expected_loss'] / \\\n", " (scenario['detach_adj'] - scenario['attach_adj']) / \\\n", " scenario['indexfactor'] * 10000\n", "mispricing" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Let's use a GAM model instead?\n", "#only use the 5yr point for modeling\n", "equity = gini_calc.loc(axis=0)[:,:,[25,27,29,31,33],'5yr',0]\n", "X = np.array(equity[['gini_spread', 'duration', 'moneyness']])\n", "y = np.array(equity['exp_percentage'])\n", "\n", "#Fit for Lamda\n", "gam_model = GAM(s(0, n_splines=5) +\n", " s(1, n_splines=5) +\n", " s(2, n_splines=5))\n", "lam = np.logspace(-3, 5, 5, base=3)\n", "lams = [lam] * 3\n", "gam_model.gridsearch(X, y, lam=lams)\n", "\n", "gam_model.summary()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## plotting\n", "fig, axs = plt.subplots(1,3);\n", "\n", "titles = ['gini_spread', 'duration', 'moneyness']\n", "for i, ax in enumerate(axs):\n", " XX = gam_model.generate_X_grid(term=i)\n", " ax.plot(XX[:, i], gam_model.partial_dependence(term=i, X=XX))\n", " ax.plot(XX[:, i], gam_model.partial_dependence(term=i, X=XX, width=.95)[1], c='r', ls='--')\n", " if i == 0:\n", " ax.set_ylim(-30,30)\n", " ax.set_title(titles[i]);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.scatter(y, gam_model.predict(X))\n", "plt.xlabel('actual correlation')\n", "plt.ylabel('predicted correlation')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "today = gini_calc.loc(axis=0)[value_date,'HY',33,'5yr',0]\n", "predict_HY33 = gam_model.predict(np.array(today[['gini_spread', 'duration', 'moneyness']]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "today, predict_HY33" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1-final" } }, "nbformat": 4, "nbformat_minor": 4 }