{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "1d37c1d7-e332-4cb3-b228-0045c547ab93", "metadata": {}, "outputs": [], "source": [ "import pnl_explain as pl\n", "import datetime\n", "from itertools import chain\n", "from serenitas.utils.db import dbconn\n", "\n", "dawndb = dbconn(\"dawndb\")" ] }, { "cell_type": "code", "execution_count": null, "id": "f600c71b-59a9-4f10-beac-37718f6e4016", "metadata": {}, "outputs": [], "source": [ "today = datetime.date.today()\n", "start_date = datetime.date(2022,11,1)\n", "end_date = datetime.date(2022,12,1)\n", "strats = {\n", " \"swaption\": (\"IGOPTDEL\", \"HYOPTDEL\"),\n", " \"macro_hedge\": (\"HEDGE_MAC\",),\n", " \"tranche\": (\"IGINX\", \"HYINX\", \"XOINX\", \"EUINX\"),\n", " \"curve\": (\"SER_ITRXCURVE\", \"SER_IGCURVE\", \"SER_HYCURVE\"),\n", " \"rmbs_hedge\":(\"HEDGE_MBS\",),\n", " \"clo_hedge\": (\"HEDGE_CLO\",),\n", "}" ] }, { "cell_type": "code", "execution_count": null, "id": "79fdf8bb-79a9-48e5-b97e-ad5d862078fd", "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings('ignore')\n", "for fund in ['SERCGMAST', 'ISOSEL', 'BOWDST']:\n", " pnl = {}\n", " #bond PNL---------------\n", " for ac in ['CRT', 'Subprime', 'CLO']:\n", " df_instrument = pl.get_pv(conn=dawndb, \n", " fund=fund, \n", " pnl_type = 'bond', \n", " asset_class = ac, \n", " start_date = start_date, \n", " end_date = end_date)\n", " if not df_instrument.empty:\n", " pnl[ac] = pl.get_pnl(df_instrument, 'bond')\n", " #Tranches---------------\n", " ac = 'tranche'\n", " pv2=True\n", " df_instrument = pl.get_pv(conn=dawndb, \n", " fund=fund, \n", " pnl_type = ac, \n", " start_date = start_date, \n", " end_date = end_date,\n", " pv2=pv2)\n", " pnl[ac] = pl.get_pnl(df_instrument, ac, pv2=pv2)\n", " #swaptions--------------\n", " ac = 'swaption'\n", " df_instrument = pl.get_pv(conn=dawndb, \n", " fund=fund, \n", " pnl_type = ac, \n", " start_date = start_date, \n", " end_date = end_date, \n", " source_list=['CITI', 'JPM'])\n", " pnl[ac] = pl.get_pnl(df_instrument, ac)\n", " #All the cleared indices--------\n", " for ac in ['macro_hedge', 'curve', 'tranche', 'swaption', 'rmbs_hedge', 'clo_hedge']: \n", " df_index = pl.get_index_pv(\n", " start_date, end_date, fund, dawndb, strats[ac]\n", " )\n", " pnl[ac+'_index'] = df_index.pv.diff() + df_index[[\"upfront\", \"accrued\"]].sum(axis=1)\n", " #FX PV-------------\n", " ac = 'fx_forward'\n", " df_instrument = pl.get_fx_pv(start_date = start_date,\n", " end_date = end_date,\n", " fund=fund)\n", " pnl_inst = pl.get_pnl(df_instrument, ac)\n", " pnl_inst.index = pd.to_datetime(pnl_inst.index)\n", " pnl[ac] = pnl_inst\n", " pnl_all = pd.concat(pnl, axis=1).fillna(0)\n", " filename = '/home/serenitas/Daily/' + today.strftime(\"%Y-%m-%d\")+ \"/\" + fund + '_pnl.csv'\n", " pnl_all.to_csv(filename)" ] }, { "cell_type": "code", "execution_count": null, "id": "e179cc99-edb1-48b9-b50e-7a5ae25c1e86", "metadata": {}, "outputs": [], "source": [ "#check if first day of NAV and if the upfront payment line up. if not, PNL will not work\n", "#check trade date vs. that NULL NAV/upfront date. If it is termination it is okay\n", "ac= 'tranche'\n", "df_instrument = pl.get_pv(conn=dawndb, \n", " fund=fund, \n", " pnl_type = ac, \n", " start_date = start_date, \n", " end_date = end_date,\n", " pv2=pv2)\n", "check_trades = df_instrument.loc[df_instrument['clean_nav'].isna() &\n", " df_instrument['principal'].notna()]\n", "cds_trades = pd.read_sql_query(\"SELECT id, trade_date from cds\", dawndb,parse_dates=[\"trade_date\"], index_col=['id'])\n", "check_trades = pd.merge(check_trades, cds_trades, left_index=True, right_index=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "b83ec89d-45c3-4d28-8cfd-0be20b550a69", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" } }, "nbformat": 4, "nbformat_minor": 5 }