{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import datetime\n", "from pandas.tseries.offsets import BDay, MonthEnd\n", "import globeop_reports as go\n", "import pandas as pd\n", "import analytics\n", "import numpy as np\n", "\n", "from analytics.index_data import get_index_quotes\n", "from analytics.scenarios import run_portfolio_scenarios\n", "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n", "\n", "from utils.db import dbconn, dbengine\n", "\n", "from risk.tranches import get_tranche_portfolio\n", "from risk.swaptions import get_swaption_portfolio\n", "from risk.bonds import subprime_risk, clo_risk, crt_risk\n", "\n", "dawn_engine = dbengine('dawndb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#PNL Allocation\n", "date = datetime.date.today() - BDay(1)\n", "report_date = date - MonthEnd(1)\n", "report_date" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Find the strategies that are not defined: undefined needs to be mapped in strat_map\n", "strats = pd.read_csv('/home/serenitas/edwin/Python/strat_map.csv')\n", "nav = go.get_net_navs()\n", "m_pnl = go.get_monthly_pnl(['strat', 'custacctname'])\n", "m_pnl = m_pnl.reset_index().merge(strats, on=['strat', 'custacctname'], how='left')\n", "undefined = m_pnl[m_pnl.pnl.isna()].groupby(['strat', 'custacctname']).last()\n", "#Get PNL Allocation\n", "#Input latest NAVS to: '/home/serenitas/edwin/Python/subscription_fee_data.csv'\n", "pnl_alloc = m_pnl.groupby(['date', 'pnl']).sum()\n", "pnl_alloc = pnl_alloc.join(nav.begbooknav)\n", "pnl_alloc['strat_return'] = pnl_alloc.mtdtotalbookpl / pnl_alloc.begbooknav\n", "#rolling 12 months PNL per strategy - copy to RiskMonitor\n", "start_date = report_date - pd.tseries.offsets.MonthEnd(11)\n", "rolling_return = pnl_alloc[start_date:report_date].groupby('pnl').sum()['strat_return']\n", "rolling_return.to_clipboard()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Average Portfolio Sales Turnover - as of last monthend from today\n", "#(total Bond Sales Proceeds + paydown)/average starting 12 months NAV\n", "#Actually: Rolling 12 months sum of (total bond sales proceeds + paydown)/monthly NAV\n", "nav = go.get_net_navs()\n", "fund='SERCGMAST'\n", "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " params=[fund,],\n", " index_col = 'trade_date')\n", "df = df.groupby(pd.Grouper(freq='M')).sum()\n", "#Average traded volume (Bonds only)\n", "\n", "#Now get portfolio paydown per month\n", "portfolio = go.get_portfolio()\n", "portfolio = portfolio[(portfolio.custacctname == 'V0NSCLMAMB') &\n", " (portfolio.identifier != 'USD') &\n", " (portfolio.endqty != 0)]\n", "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history\", dawn_engine,\n", " parse_dates=['date'],\n", " index_col=['date']).sort_index()\n", "portfolio = portfolio.set_index('identifier', append=True)\n", "portfolio = portfolio['endqty'].groupby(['identifier', 'periodenddate']).sum()\n", "portfolio = portfolio.reset_index('identifier')\n", "df_1 = pd.merge_asof(cf, portfolio.sort_index(), left_index=True, right_index=True, by='identifier')\n", "df_1 = df_1.dropna(subset=['endqty'])\n", "df_1 = df_1[(df_1.principal_bal != 0) & (df_1.principal != 0)]\n", "df_1['paydown'] = df_1.apply(lambda df: df.endqty/df.principal_bal * df.principal, axis=1)\n", "paydowns = df_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n", "temp = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n", "turnover = (temp.sum(axis=1)/nav.begbooknav).rolling(12).sum()\n", "turnover[12:].plot()\n", "turnover[-1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Average Portfolio Sales Turnover - as of last monthend from today\n", "#(total Bond Sales Proceeds + paydown)/average starting 12 months NAV\n", "#Actually: Rolling 12 months sum of (total bond sales proceeds + paydown)/monthly NAV\n", "nav = go.get_net_navs()\n", "fund='SERCGMAST'\n", "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " params=[fund,],\n", " index_col = 'trade_date')\n", "df = df.groupby(pd.Grouper(freq='M')).sum()\n", "\n", "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history\", dawn_engine,\n", " parse_dates=['date'],\n", " index_col=['date']).sort_index()\n", "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n", "pos = {}\n", "for d in cf.index.unique():\n", " for ac in ['Subprime', 'CRT']:\n", " pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n", "pos = pd.concat(pos, names=['date', 'asset_class'])\n", "pos = pos.reset_index(level=[1,2])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Average Monthly Traded Volume\n", "nav = go.get_net_navs()\n", "sql_string = \"SELECT * FROM bonds\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " index_col = 'trade_date')\n", "df = df.groupby(pd.Grouper(freq='M')).sum()\n", "volume = df.principal_payment/nav.endbooknav\n", "volume.mean()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Average Holding Period\n", "#Time series of bond portfolio age (portfolio date - latest buy date of position) - weighted by MV of all bonds.\n", "#Problem is if we buy the same position again it resets to the holding period to 0\n", "nav = go.get_net_navs()\n", "sql_string = \"SELECT * FROM bonds order by trade_date desc\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " index_col = 'trade_date')\n", "buys = df[df.buysell == True].sort_index()\n", "buys['buy_date'] = buys.index\n", "#get portfolio \n", "port = go.get_portfolio()\n", "port.sort_index(inplace=True)\n", "buy_dates = pd.merge_asof(port, buys[['buy_date', 'identifier']], left_index=True, right_index=True,by='identifier', direction='backward')\n", "buy_dates = buy_dates[['identifier', 'endbooknav','buy_date']][~buy_dates.buy_date.isna()]\n", "buy_dates['hold_days'] = (buy_dates.index - buy_dates.buy_date)/np.timedelta64(1, 'D')\n", "def weighted_average(df):\n", " return np.average(df.hold_days,weights=df.endbooknav)\n", "hold_period = buy_dates.groupby('periodenddate').apply(func = weighted_average)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################## Calculate Historical Bond Duration/Yield\n", "analytics.init_ontr()\n", "mysql_engine = dbengine('rmbs_model')\n", "end_date = pd.datetime.today() - MonthEnd(1)\n", "dates = pd.date_range(datetime.date(2013, 1, 30), end_date, freq=\"M\")\n", "calc_df = pd.DataFrame()\n", "sql_string = (\"SELECT distinct timestamp::date FROM priced where normalization = 'current_notional' and model_version = 1 \"\n", " \"and date(timestamp) < %s and date(timestamp) > %s order by timestamp desc\")\n", "with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n", " for d in dates:\n", " timestamps = pd.read_sql_query(sql_string, dawn_engine, parse_dates=[\"timestamp\"], params=[d, d - pd.tseries.offsets.DateOffset(15, \"D\")])\n", " calc_df = calc_df.append(subprime_risk(d.date(), dawnconn, mysql_engine, timestamps.iloc[0,0].date()))\n", "calc_df=calc_df.reset_index().set_index('date')\n", "calc_df = calc_df.dropna(subset=['bond_yield', 'hy_equiv']) \n", "bond_stats = pd.DataFrame()\n", "for d, g in calc_df.groupby(pd.Grouper(freq='M')):\n", " bond_stats.loc[d, 'dur'] = sum(g.notional * g.factor * g.modDur)/sum(g.notional * g.factor)\n", " bond_stats.loc[d, 'yield'] = sum(g.usd_market_value * g.modDur * g.bond_yield) /sum(g.usd_market_value * g.modDur)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Calculate stress scenario \n", "position_date = (datetime.date.today() - BDay(1)).date()\n", "shock_date = (datetime.date.today() - BDay(1)).date()\n", "spread_date = shock_date\n", "(position_date, spread_date, shock_date)\n", "analytics.init_ontr(spread_date)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Calculate amount of stress for reports\n", "from analytics.curve_trades import on_the_run\n", "df = get_index_quotes('HY', list(range(on_the_run('HY', spread_date) - 10, on_the_run('HY', spread_date) + 1)),\n", " tenor=['5yr'], years=5)\n", "df = df.xs('5yr', level='tenor')['close_spread'].groupby(['date', 'series']).last()\n", "\n", "widen, tighten = [], []\n", "#approximately 1,3,6 months move (22 each months)\n", "for days in [22, 66, 132]: \n", " calc = df.unstack().pct_change(freq= str(days)+'B').stack().groupby('date').last()\n", " widen.append(calc.max())\n", " tighten.append(calc.min())\n", "pd.DataFrame([widen, tighten], columns=['1M', '3M', '6M'], index=['widen', 'tighten'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#tranche positions\n", "conn = dawn_engine.raw_connection()\n", "mysql_engine = dbengine('rmbs_model')\n", "mysqlcrt_engine = dbengine('crt')\n", "\n", "portf = get_tranche_portfolio(position_date, conn, False, 'SERCGMAST')\n", "s_portf = get_swaption_portfolio(position_date, conn)\n", "for t, id in zip(s_portf.trades, s_portf.trade_ids):\n", " portf.add_trade(t, id)\n", "\n", "#index positions\n", "df = pd.read_sql_query(\"SELECT * from list_cds_positions_by_strat(%s)\",\n", " dawn_engine, params=(position_date,))\n", "df_no_curve = df[~df.folder.str.contains(\"CURVE\")]\n", "for t in df_no_curve.itertuples(index=False):\n", " portf.add_trade(CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional),\n", " (t.folder, t.security_desc))\n", " \n", "#separately add in curve delta\n", "df_curve = df[df.folder.str.contains(\"CURVE\")]\n", "curve_portf = Portfolio([CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional)\n", " for t in df_curve.itertuples(index=False)])\n", "curve_portf.value_date = spread_date\n", "curve_portf.mark()\n", "\n", "portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n", " value_date=spread_date, \n", " notional=curve_portf.hy_equiv), ('curve_trades', ''))\n", "\n", "#get bond risks:\n", "with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n", " rmbs_pos = subprime_risk(position_date, dawnconn, mysql_engine)\n", " clo_pos = clo_risk(position_date, dawnconn, etconn)\n", " crt_pos = crt_risk(position_date, dawnconn, mysqlcrt_engine)\n", "if clo_pos is None:\n", " notional = rmbs_pos['hy_equiv'].sum() + crt_pos['hy_equiv'].sum()\n", "else:\n", " notional = rmbs_pos['hy_equiv'].sum() + clo_pos['hy_equiv'].sum() + crt_pos['hy_equiv'].sum()\n", "portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n", " value_date = spread_date, \n", " notional = -notional), ('bonds', ''))\n", " \n", "portf.value_date = spread_date\n", "portf.mark(interp_method=\"bivariate_linear\")\n", "portf.reset_pv()\n", "\n", "vol_surface = {}\n", "for trade in portf.swaptions:\n", " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n", " value_date=spread_date, interp_method = \"bivariate_linear\")\n", " vol_surface[(trade.index.index_type, trade.index.series, trade.option_type)] = vs[vs.list(source='MS', option_type=trade.option_type)[-1]]\n", "\n", "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(shock_date)], params=[\"pnl\"],\n", " spread_shock=widen,\n", " vol_shock=[0],\n", " corr_shock = [0],\n", " vol_surface=vol_surface)\n", "\n", "attrib = (scens.\n", " reset_index(level=['date'], drop=True).\n", " groupby(level=0, axis=1).sum())\n", "results = attrib.xs((widen[2], 0., 0.), level=['spread_shock', 'corr_shock', 'vol_shock']).T" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "results.to_clipboard(header=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Run set of scenario\n", "spread_shock = np.round(np.arange(-.2, 1, .05), 3)\n", "scens = run_portfolio_scenarios(portf, date_range, params=['pnl', 'delta'],\n", " spread_shock=spread_shock,\n", " vol_shock=vol_shock,\n", " corr_shock=[0],\n", " vol_surface=vol_surface)\n", "\n", "pnl = scens.xs('pnl', axis=1, level=2)\n", "pnl = pnl.xs((0,0), level=['vol_shock', 'corr_shock'])\n", "\n", "scenarios = (pnl.\n", " reset_index(level=['date'], drop=True).\n", " groupby(level=0, axis=1).sum())\n", "\n", "options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC']\n", "tranches = ['HYMEZ', 'HYINX', 'HYEQY', 'IGMEZ', 'IGINX', 'IGEQY', 'IGSNR', 'IGINX', 'BSPK']\n", "\n", "scenarios['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)\n", "scenarios['tranches'] = scenarios[set(scenarios.columns).intersection(tranches)].sum(axis=1)\n", "\n", "synthetic = scenarios[['options', 'tranches', 'curve_trades']]\n", "synthetic['total'] = synthetic.sum(axis = 1)\n", "nav = go.get_net_navs()\n", "(synthetic/nav.endbooknav[-1]).plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }