{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from analytics.tranche_basket import DualCorrTranche, TrancheBasket\n", "import datetime" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ig29 = TrancheBasket(\"IG\", 29, \"5yr\")\n", "ig29.tweak()\n", "ig29.build_skew()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bozeman = DualCorrTranche.from_tradeid(1037)\n", "bozeman" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bozeman.value_date=datetime.date(2019, 5, 1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bozeman.mark(skew=ig29.skew)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bozeman.pv" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Bozeman\n", "import pandas as pd\n", "date_range = pd.bdate_range(end=datetime.date.today(), periods=16, freq = '5B')\n", "df = pd.DataFrame(index = date_range, columns = ['spread', 'duration', 'port_spread'])\n", "index = TrancheBasket(\"IG\", 29, \"5yr\")\n", "tranche = DualCorrTranche.from_tradeid(1037)\n", "for date in date_range:\n", " index.value_date = date\n", " index.tweak()\n", " index.build_skew()\n", " tranche.value_date = date\n", " tranche.mark(skew=index.skew)\n", " df.loc[date] = [tranche.spread, tranche.duration, tranche._index.spread()[0]/10000]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df[['spread', 'port_spread']].plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bs1.duration" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bs1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "jtd = bs3.jump_to_default(ig29.skew)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "jtd.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }