{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from analytics.tranche_basket import DualCorrTranche, TrancheBasket\n", "from pandas.tseries.offsets import BDay\n", "\n", "import scipy.interpolate as intp\n", "import numpy as np\n", "import datetime" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "index = 'EU'\n", "series = 30\n", "value_date=datetime.date.today() - BDay(1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "idx = TrancheBasket(index, series, \"5yr\", value_date=value_date)\n", "idx.tweak()\n", "idx.build_skew()\n", "a,b, bond_prices =idx.tranche_pvs()\n", "bond_prices" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "idx.tranche_spreads()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "a,b, bond_prices = idx.tranche_pvs(zero_recovery=True)\n", "bond_prices" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "idx.tranche_spreads(zero_recovery=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#map rho to the new expected loss\n", "idx_zero_loss = idx.expected_loss()/(1-idx.recovery_rates.mean())\n", "exp_loss = np.zeros(1)\n", "for k in idx.K[1:]:\n", " exp_loss = np.append(exp_loss, idx.expected_loss_trunc(k))\n", "moneyness = np.divide(idx.K, exp_loss)\n", "zero_moneyness = np.divide(idx.K, exp_loss/(1-idx.recovery_rates.mean()))\n", "extrapolate = intp.interp1d(moneyness[1:4], idx.rho[1:4], fill_value='extrapolate')\n", "idx.rho[1:4] = extrapolate(zero_moneyness[1:4])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "a,b, bond_prices = idx.tranche_pvs(zero_recovery=True)\n", "bond_prices" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "idx.tranche_spreads(zero_recovery=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#top down - to price SS\n", "idx.build_skew(skew_type='topdown')\n", "extrapolate = intp.interp1d(moneyness[1:4], idx.rho[1:4], fill_value='extrapolate')\n", "idx.rho[1:4] = extrapolate(zero_moneyness[1:4])\n", "idx.tranche_spreads(zero_recovery=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }