{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import datetime\n", "from pandas.tseries.offsets import BDay, MonthEnd\n", "import globeop_reports as go\n", "import pandas as pd\n", "import analytics\n", "import numpy as np\n", "\n", "from analytics.index_data import get_index_quotes\n", "from analytics.scenarios import run_portfolio_scenarios\n", "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n", "\n", "from utils.db import dbconn, dbengine\n", "\n", "from risk.tranches import get_tranche_portfolio\n", "from risk.swaptions import get_swaption_portfolio\n", "from risk.bonds import subprime_risk, clo_risk, crt_risk\n", "\n", "dawn_engine = dbengine('dawndb')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Average Portfolio Sales Turnover - as of last monthend from today\n", "#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n", "fund='BRINKER'\n", "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s order by trade_date desc\"\n", "df = pd.read_sql_query(sql_string, dawn_engine,\n", " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", " params=[fund,],\n", " index_col = 'trade_date')\n", "df = df.groupby(pd.Grouper(freq='M')).sum()\n", "\n", "brinker_nav = pd.read_csv(\n", " \"/home/serenitas/edwin/Python/brinker_nav.csv\",\n", " parse_dates=[\"date\"],\n", " index_col=[\"date\"])\n", "\n", "start_date = datetime.date(2019,3,18)\n", "end_date = datetime.date.today()\n", "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n", " params=[start_date, end_date],\n", " parse_dates=['date'],\n", " index_col=['date']).sort_index()\n", "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n", "pos = {}\n", "for d in cf.index.unique():\n", " for ac in ['Subprime', 'CRT']:\n", " pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n", "pos = pd.concat(pos, names=['date', 'asset_class'])\n", "pos = pos.reset_index(level=[1,2])\n", "\n", "cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n", "cf_1 = cf_1.dropna(subset=['notional'])\n", "cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n", "cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n", "paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n", "turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n", "brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n", "turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }