{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import itertools\n", "import datetime\n", "import exploration.dispersion as disp\n", "import matplotlib.pyplot as plt\n", "import statsmodels.formula.api as smf\n", "import analytics.tranche_data as tdata\n", "import ipysheet\n", "\n", "from analytics.basket_index import MarkitBasketIndex\n", "from analytics import on_the_run\n", "from statsmodels.graphics.regressionplots import plot_fit\n", "from scipy.special import logit, expit\n", "from pygam import LinearGAM, s, f, GAM\n", "from utils.db import dbengine, dbconn" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "value_date = (datetime.datetime.today() - pd.offsets.BDay(1)).date()\n", "start = (datetime.datetime.today() - pd.offsets.BDay(1) * 365 *4).date()\n", "#end = (start + pd.offsets.BDay(1) * 365).date()\n", "end = datetime.datetime.today()\n", "gini_model, gini_results = {}, {}\n", "conn = dbconn(\"serenitasdb\")\n", "conn.autocommit = True\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " risk = disp.get_tranche_data(dbconn(\"serenitasdb\"), index_type)\n", " risk = risk[risk.index_duration > 1] #filter out the short duration ones\n", " gini_results[index_type], gini_model[index_type] = disp.create_models_v2(conn, risk)\n", " #fitted = gini_model[index_type].fit()\n", " #w = 1/(expit(fitted.fittedvalues + fitted.resid) -expit(fitted.fittedvalues))**2\n", " #gini_results[index_type], gini_model[index_type] = disp.create_models_v2(conn, risk, w)\n", "gini_model['HY'].fit().summary()\n", "\n", "fieldlist = ['exp_percentage','dispersion','gini','tranche_loss_per','mispricing']\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " gini_results[index_type][fieldlist].to_csv('/home/serenitas/edwin/' + index_type + '_results.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fieldlist = ['exp_percentage','dispersion','gini','tranche_loss_per','mispricing']\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " gini_results[index_type][fieldlist].to_csv('/home/serenitas/edwin/' + index_type + '_results.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#plot the residuals\n", "fitted = gini_model['HY'].fit()\n", "plt.figure(figsize=(8,5))\n", "p=plt.scatter(x=expit(fitted.fittedvalues),y=expit(fitted.fittedvalues + fitted.resid) -expit(fitted.fittedvalues),edgecolor='k')\n", "xmin=min(expit(fitted.fittedvalues))\n", "xmax = max(expit(fitted.fittedvalues))\n", "plt.hlines(y=0,xmin=xmin*0.9,xmax=xmax*1.1,color='red',linestyle='--',lw=3)\n", "plt.xlabel(\"Fitted values\",fontsize=15)\n", "plt.ylabel(\"Residuals\",fontsize=15)\n", "plt.title(\"Fitted vs. residuals plot\",fontsize=18)\n", "plt.grid(True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#plot the gini coefficients\n", "ginis = gini_results['HY'].xs([0, '5yr', 'HY'],level=['attach','tenor', 'index']).groupby(['date', 'series']).nth(-1).gini.unstack(level='series')\n", "ginis.plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#sheet = ipysheet.sheet(rows=2000, columns=7, column_headers=False, row_headers=False)\n", "import IPython\n", "pd.set_option(\"display.max_rows\", None)\n", "#IPython.OutputArea.auto_scroll_threshold = 20\n", "ginis.sort_index(ascending=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#look at Volatility vs Correlation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#use RFE to get the model instead\n", "from sklearn.preprocessing import PolynomialFeatures, PowerTransformer, normalize\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.feature_selection import RFECV, SelectKBest, f_regression\n", "from sklearn.compose import TransformedTargetRegressor\n", "\n", "import numpy as np\n", "\n", "class MyTransformedTargetRegressor(TransformedTargetRegressor):\n", " @property\n", " def coef_(self):\n", " return self.regressor_.coef_\n", " \n", " @property\n", " def feature_importances_(self):\n", " return self.regressor_.feature_importances_\n", " \n", "index_type = 'HY'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "all_variable_list = ['tranche_loss_per', 'tranche_id', 'index_price', 'index_basis', 'detach', 'corr_at_detach', \n", " 'attach_adj', 'detach_adj', 'index_theta', 'delta','gamma', 'corr01', 'expected_loss', \n", " 'exp_percentage', 'indexfactor', 'duration', 'index_expected_loss',\n", " #Comment out to include\n", " # 'index_duration',\n", " 'theta',\n", " 'cumulativeloss',\n", " # 'att_moneyness',\n", " 'det_moneyness',\n", " 'thickness',\n", " # 'moneyness',\n", " # 'dispersion',\n", " 'gini',\n", " 'forward_delta']\n", "\n", "def run_rfe(index_type):\n", " risk = disp.get_tranche_data(dbconn(\"serenitasdb\"), index_type)\n", " attach_max = risk.index.get_level_values(\"attach\").max()\n", " bottom_stack = risk[risk.index.get_level_values(\"attach\") != attach_max]\n", " bottom_stack = bottom_stack[bottom_stack.tranche_loss_per > 0].dropna()\n", "\n", " #prepare the variables\n", " y = bottom_stack['tranche_loss_per']\n", " X = bottom_stack.drop(all_variable_list, axis=1)\n", "\n", " poly = PolynomialFeatures(3)\n", " X = pd.DataFrame(PowerTransformer().fit_transform(X), index=X.index, columns=X.columns)\n", " X_p = pd.DataFrame(poly.fit_transform(X), columns= poly.get_feature_names(X.columns))\n", " regr = MyTransformedTargetRegressor(regressor=LinearRegression(), func=logit, inverse_func=expit)\n", "\n", " rfecv = RFECV(regr).fit(X_p,y)\n", "\n", " df = pd.merge(risk, \n", " pd.DataFrame(rfecv.predict(X_p), \n", " index=X.index, \n", " columns=['predict_tranche_loss']),\n", " how='left', left_index=True, right_index=True)\n", "\n", " df.loc[df.index.get_level_values(\"attach\") != attach_max, \"predict_tranche_loss_per_index\"] = (\n", " df.predict_tranche_loss * df.thickness / df.index_expected_loss\n", " )\n", "\n", " def aux(s):\n", " temp = s.values\n", " temp[-1] = 1 - temp[:-1].sum()\n", " return temp\n", "\n", " df[\"predict_tranche_loss_per_index\"] = df.groupby([\"index\", \"series\", \"date\"])[\"predict_tranche_loss_per_index\"].transform(aux)\n", " df = df.assign(\n", " mispricing=(df.exp_percentage - df.predict_tranche_loss_per_index)\n", " * df.index_expected_loss\n", " / (df.detach_adj - df.attach_adj)\n", " )\n", "\n", " print(index_type, \" Chosen columns: \", X_p[X_p.columns[rfecv.support_]].columns)\n", " print(index_type, \" Score: \", rfecv.score(X_p, y))\n", " \n", " return rfecv, df\n", "\n", "gini_model, gini_results = {}, {}\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " gini_model[index_type], gini_results[index_type] = run_rfe(index_type)\n", "fieldlist = ['exp_percentage','dispersion','gini','tranche_loss_per','mispricing']\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " gini_results[index_type][fieldlist].to_csv('/home/serenitas/edwin/' + index_type + '_results_rfecv.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gini_model, gini_results = {}, {}\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " gini_model[index_type], gini_results[index_type] = run_rfe(index_type)\n", "fieldlist = ['exp_percentage','dispersion','gini','tranche_loss_per','mispricing']\n", "for index_type in ['HY', 'IG', 'EU', 'XO']:\n", " gini_results[index_type][fieldlist].to_csv('/home/serenitas/edwin/' + index_type + '_results_rfecv.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Plot number of features VS. cross-validation scores\n", "index_type = 'IG'\n", "plt.figure()\n", "plt.xlabel(\"Number of features selected\")\n", "plt.ylabel(\"Cross validation score (nb of correct classifications)\")\n", "plt.plot(range(1, len(gini_model[index_type].grid_scores_) + 1), gini_model[index_type].grid_scores_)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }