{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import datetime\n", "import globeop_reports as go\n", "import pandas as pd\n", "import analytics\n", "import numpy as np\n", "\n", "from pandas.tseries.offsets import BDay, MonthEnd\n", "from analytics.scenarios import run_portfolio_scenarios\n", "from utils.db import dbconn\n", "from risk.portfolio import build_portfolio, generate_vol_surface\n", "from analytics.basket_index import BasketIndex" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Set dates\n", "position_date = (datetime.date.today() - MonthEnd(1)).date()\n", "spread_date = position_date\n", "analytics._local = False\n", "analytics.init_ontr(spread_date)\n", "path = '/home/serenitas/Daily/Risk/'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### Run Credit Spread scenarios\n", "spread_shock = np.array([-100., -25., 1., +25. , 100.])\n", "spread_shock /= analytics._ontr['HY'].spread\n", "portf, _ = build_portfolio(position_date, spread_date)\n", "vol_surface = generate_vol_surface(portf, 5)\n", "portf.reset_pv()\n", "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n", " spread_shock=spread_shock,\n", " vol_shock=[0.0],\n", " corr_shock=[0.0],\n", " vol_surface=vol_surface)\n", "scens.sum(axis=1).to_csv(path+'csscen_'+position_date.strftime(\"%Y%m%d\")+'.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "################################### JTD\n", "_, portf = build_portfolio(position_date, spread_date)\n", "jtd_i = []\n", "for t in portf.indices:\n", " bkt = BasketIndex(t.index_type, t.series, [t.tenor])\n", " spreads = pd.DataFrame(bkt.spreads() * 10000, index=pd.Index(bkt.tickers, name='ticker'), columns=['spread'])\n", " jump = pd.merge(spreads, bkt.jump_to_default() * t.notional, left_index=True, right_index=True)\n", " jtd_i.append(jump.rename(columns={jump.columns[1]: 'jtd'}))\n", "jtd_t = []\n", "for t in portf.tranches:\n", " jump = pd.concat([t.singlename_spreads().reset_index(['seniority', 'doc_clause'], drop=True), t.jump_to_default().rename('jtd')], axis=1)\n", " jtd_t.append(jump.drop(['weight', 'recovery'], axis=1))\n", "\n", "ref_names = pd.read_sql_query(\"select ticker, referenceentity from refentity\", dbconn('serenitasdb'), index_col='ticker')\n", "jump = pd.concat([pd.concat(jtd_t), pd.concat(jtd_i)])\n", "jump = jump.merge(ref_names, left_index=True, right_index=True)\n", "jump = jump.groupby('referenceentity').agg({'spread': np.mean, 'jtd': np.sum}).sort_values(by='jtd', ascending=True)\n", "jump.to_csv(path+'jtd_'+position_date.strftime(\"%Y%m%d\")+'.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.1 64-bit", "language": "python", "name": "python38164bitc40c8740e5d542d7959acb14be96f4f3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }