{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# better formatting for large floats\n", "import pandas as pd\n", "pd.options.display.float_format = \"{:,.2f}\".format" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from risk.swaptions import get_swaption_portfolio\n", "import datetime\n", "from utils.db import dbconn\n", "from analytics import init_ontr\n", "conn = dbconn('dawndb')\n", "conn.autocommit = True\n", "init_ontr()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "portf = get_swaption_portfolio(datetime.date.today(), conn, source_list=['GS'])\n", "portf" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df = portf._todf()\n", "positions = df.set_index(\"Index\")[[\"Delta\", \"Notional\"]].prod(axis=1).groupby(level=\"Index\").sum()\n", "positions.name = 'current_delta'\n", "gamma = df.set_index(\"Index\")[[\"Gamma\", \"Notional\"]].prod(axis=1).groupby(level=\"Index\").sum()\n", "gamma.name = 'gamma'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "hedges = pd.read_sql_query(\"SELECT security_desc, notional FROM list_cds_positions_by_strat(%s) \"\n", " \"WHERE folder in ('IGOPTDEL', 'HYOPTDEL')\",\n", " conn, params=(datetime.date.today(),))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def f(s):\n", " l = s.split(\" \")\n", " return f\"{l[1]}{l[3][1:]} {l[4].lower()}r\"\n", "\n", "hedges[\"Index\"] = hedges[\"security_desc\"].apply(f)\n", "hedges = hedges.rename(columns={\"notional\": \"current hedge\"})\n", "hedges = hedges.set_index(\"Index\")[\"current hedge\"]\n", "hedges = hedges.reindex(positions.index, fill_value=0.)\n", "risk = pd.concat([hedges, positions, gamma], axis=1)\n", "risk['net_delta'] = risk[\"current hedge\"] + risk.current_delta\n", "risk" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from analytics.scenarios import run_portfolio_scenarios\n", "from analytics import BlackSwaptionVolSurface, CreditIndex\n", "import analytics\n", "import datetime\n", "import numpy as np\n", "\n", "today = datetime.datetime.now()\n", "yesterday = datetime.date.today() - pd.offsets.BDay()\n", "\n", "portf = get_swaption_portfolio(yesterday, conn, source_list=['GS'])\n", "for i, amt in hedges.iteritems():\n", " portf.add_trade(CreditIndex(i[:2], i[2:4], '5yr', value_date=yesterday, notional=amt), ('delta', i))\n", "\n", "vol_surface = {}\n", "for trade in portf.swaptions:\n", " vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n", " value_date=today.date(), interp_method = \"bivariate_linear\")\n", " vol_surface[(trade.index.index_type, trade.index.series, trade.option_type)] = vs[vs.list(source='GS', option_type=trade.option_type)[-1]]\n", "\n", "#Set original_pv as of yesterday's EOD levels, don't reset PV after this time\n", "portf.mark(interp_method=\"bivariate_linear\", source_list=['GS'])\n", "portf.reset_pv()\n", "\n", "#set ref to today's levels\n", "portf.value_date = today\n", "portf.mark(interp_method=\"bivariate_linear\", source_list=['GS'])\n", "\n", "spread_shock = np.round(np.arange(-.1, .1, .01), 4)\n", "scens = run_portfolio_scenarios(portf, [today], params=['pnl', 'hy_equiv', 'sigma'],\n", " spread_shock=spread_shock,\n", " vol_shock=[0],\n", " corr_shock=[0],\n", " vol_surface=vol_surface)\n", "pnl = scens.xs('pnl', level = 2, axis=1).sum(axis=1)\n", "hy_equiv = scens.xs('hy_equiv', level = 2, axis=1).sum(axis=1)\n", "\n", "ig = CreditIndex('IG', 32, '5yr', value_date = today)\n", "ig.mark()\n", "\n", "pnl.index = pnl.index.set_levels((1+pnl.index.get_level_values('spread_shock')) * ig.spread, level = 'spread_shock')\n", "hy_equiv.index = pnl.index" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pnl, hy_equiv" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }