{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import analytics.tranche_basket as bkt\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from analytics.scenarios import run_tranche_scenarios, run_portfolio_scenarios, run_tranche_scenarios_rolldown\n", "from analytics import Swaption, BlackSwaption, Index, BlackSwaptionVolSurface, Portfolio, ProbSurface\n", "from db import dbengine\n", "from datetime import date\n", "from graphics import plot_time_color_map\n", "\n", "dawnengine = dbengine('dawndb')\n", "\n", "value_date = (pd.datetime.today() - pd.offsets.BDay(2)).date()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Construct IG Swaption Portfolio\n", "index = 'IG'\n", "series = 30\n", "option_delta = Index.from_name(index, series, '5yr')\n", "option_delta.spread = 65\n", "option1 = BlackSwaption(option_delta, date(2018, 10, 17), 60, option_type=\"payer\")\n", "option1.sigma = .398\n", "option1.direction = 'Long'\n", "option2 = BlackSwaption(option_delta, date(2018, 10, 17), 100, option_type=\"payer\")\n", "option2.sigma = .609\n", "option2.direction = 'Short'\n", "option1.notional = 100_000_000\n", "option2.notional = 300_000_000\n", "option_delta.notional = option1.notional * option1.delta + option2.notional * option2.delta\n", "\n", "portf = Portfolio([option1, option2, option_delta])\n", "portf.value_date = value_date\n", "portf.reset_pv()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Run Swaption sensitivities\n", "#Set Shock range\n", "shock_min = -.3\n", "shock_max = 1.25\n", "spread_shock = np.arange(shock_min, shock_max, 0.05)\n", "#Set Date range\n", "earliest_expiry = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date\n", "date_range = pd.bdate_range(value_date, earliest_expiry - pd.offsets.BDay(), freq='20B')\n", "#date_range = [earliest_expiry - pd.offsets.BDay()]\n", "#Setup Vol Surface\n", "vs = BlackSwaptionVolSurface(index,series, value_date=value_date)\n", "ps = ProbSurface(index,series, value_date=value_date)\n", "vol_surface = vs[vs.list(option_type='payer')[-1]]\n", "swaption_scens = run_portfolio_scenarios(portf, date_range, spread_shock, np.array([0]),\n", " vol_surface, params=[\"pnl\", \"delta\"])\n", "#swaption delta is in protection terms: switch to risk terms\n", "swaption_scens.delta = -swaption_scens.delta" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Get current Tranche positions\n", "sql_string = \"select * from list_tranche_marks(%s)\"\n", "pos = pd.read_sql_query(sql_string, dawnengine, params=(value_date,), parse_dates=['maturity'])\n", "tranche_port = []\n", "for i, r in pos.iterrows():\n", " tranche_port.append(bkt.TrancheBasket(r.p_index, r.p_series, '5yr'))\n", " tranche_port[i].build_skew()\n", "pos['basket'] = tranche_port\n", "#Set Shock Range\n", "spread_range = (1+ spread_shock) * option_delta.spread\n", "#Run tranche scenarios\n", "temp = []\n", "for i, r in pos.iterrows():\n", " df = run_tranche_scenarios_rolldown(r.basket, spread_range, date_range, corr_map=False)\n", " temp.append(r.notional*df.xs(str(r.attach) + \"-\" + str(r.detach), axis=1, level=1))\n", "tranches_scens = sum(temp)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Create snapshot of the the first scenario date\n", "total_scens = swaption_scens.reset_index().merge(tranches_scens.reset_index(), \n", " left_on=['date', 'spread'], \n", " right_on=['date', 'spread_range'], \n", " suffixes=['_s', '_t'])\n", "total_scens['pnl'] = total_scens['pnl_s'] + total_scens['pnl_t']\n", "total_scens['delta'] = total_scens['delta_s'] + total_scens['delta_t']\n", "total_scens_single_date = total_scens.set_index('date').xs(date_range[0])\n", "total_scens_single_date = total_scens_single_date.set_index('spread', drop=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#tranche positions delta at different spreads\n", "ax = total_scens_single_date.delta_t.plot(title = 'delta vs. spread levels')\n", "ax.ticklabel_format(style='plain')\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Tranche + Swaptions positions delta at different spreads\n", "ax1 = total_scens_single_date.delta.plot()\n", "ax1.ticklabel_format(style='plain')\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_scens_single_date[['delta', 'delta_t', 'delta_s']].plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_scens_single_date[['pnl', 'pnl_t', 'pnl_s']].plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_scens.date = pd.to_datetime(total_scens.date)\n", "total_scens = total_scens.set_index(['date'])\n", "plot_time_color_map(total_scens, spread_range, attr=\"pnl\")\n", "#plot_time_color_map(df, shock_range, attr=\"final_delta\", color_map= 'rainbow', centered = False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#PNL of just the swaptions\n", "plot_time_color_map(swaption_scens, spread_range, attr=\"pnl\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Construct levered Super senior hedged with swaption\n", "index = 'IG'\n", "series = 30\n", "option_delta = Index.from_name(index, series, '5yr')\n", "option_delta.spread = 62\n", "option_delta.notional = 1\n", "option1 = BlackSwaption(option_delta, date(2018, 7, 19), 75, option_type=\"payer\")\n", "option1.sigma = .52\n", "option1.direction = 'Long'\n", "option1.notional = 2_000_000_000\n", "\n", "#If we have two options instead of just one\n", "option2 = BlackSwaption(option_delta, date(2018, 7, 19), 90, option_type=\"payer\")\n", "option2.sigma = .68\n", "option2.direction = 'Long'\n", "option2.notional = 6_000_000_000\n", "\n", "option3 = BlackSwaption(option_delta, date(2018, 12, 19), 55, option_type=\"receiver\")\n", "option3.sigma = .373\n", "option3.direction = 'Short'\n", "option3.notional = 5_000_000_000\n", "\n", "#portf = Portfolio([option1, option_delta])\n", "portf = Portfolio([option1, option2, option3, option_delta])\n", "portf.value_date = value_date\n", "portf.reset_pv()\n", "#Run Swaption sensitivities\n", "#Set Shock range\n", "shock_min = -.5\n", "shock_max = 1.25\n", "spread_shock = np.arange(shock_min, shock_max, 0.05)\n", "#Set Date range\n", "earliest_expiry = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date\n", "date_range = pd.bdate_range(value_date, earliest_expiry - pd.offsets.BDay(), freq='10B')\n", "#Setup Vol Surface\n", "vs = BlackSwaptionVolSurface(index,series, value_date=value_date)\n", "ps = ProbSurface(index,series, value_date=value_date)\n", "vol_surface = vs[vs.list(option_type='payer')[-1]]\n", "swaption_scens = run_portfolio_scenarios(portf, date_range, spread_shock, np.array([0]),\n", " vol_surface, params=[\"pnl\", \"delta\"])\n", "#swaption delta is in protection terms: switch to risk terms\n", "swaption_scens.delta = -swaption_scens.delta\n", "\n", "notional = 30_000_000_000\n", "t = bkt.TrancheBasket('IG', '29', '3yr')\n", "t.build_skew()\n", "#get back to 17bps, .36 delta\n", "port_spread = 67\n", "#t.rho = np.array([np.nan, 0.39691196, 0.48904597, 0.8, np.nan])\n", "t.tweak(port_spread)\n", "spread_range = (1+ spread_shock) * port_spread\n", "tranches_scens = run_tranche_scenarios_rolldown(t, spread_range, date_range, corr_map=False)\n", "tranches_scens = notional*tranches_scens.xs('15-100', axis=1, level=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dawnengine.dispose()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }