import cvxpy import numpy as np import math from matplotlib import pyplot as plt plt.style.use('ggplot') def cor2cov(Rho, vol): return np.diag(vol) @ Rho @ np.diag(vol) def rho(sigma, delta, volF): """ computes the correlation between the asset and the factor """ return 1/math.sqrt(1+sigma**2/(delta**2*volF**2)) def resid_vol(rho, delta, volF): """ computes the residual of the asset """ return math.sqrt(delta**2*volF**2*(1/rho**2-1)) def var(rho, delta, volF): """ computes the variance of the asset """ return delta**2*volF**2+resid_vol(rho, delta, volF)**2 def compute_allocation(rho_clo = 0.9, rho_cso=0.6, rho_subprime=0.2, delta_clo=1.2, delta_cso=0.4, delta_subprime=0.8, mu_HY=0.02, mu_clo=0.08, mu_cso=0.07, mu_subprime=0.25): rho = {'CLO': rho_clo, 'CSO': rho_cso, 'Subprime': rho_subprime} delta = {'CLO': delta_clo, 'CSO': delta_cso, 'Subprime': delta_subprime} assets = ['CLO', 'CSO', 'Subprime'] mu = np.array([mu_HY, mu_clo, mu_cso, mu_subprime]) u = volHY * np.array([delta[a] for a in assets]) Sigma = np.outer(u, u) + np.diag([resid_vol(rho[a], delta[a], volHY)**2 for a in ['CLO', 'CSO', 'Subprime']]) v = volHY**2 * np.array([1] + [delta[a] for a in assets]) Sigma = np.vstack((v, np.c_[v[1:], Sigma])) sharpe = mu/np.sqrt(np.diag(Sigma)) gamma = cvxpy.Parameter(sign='positive') w = cvxpy.Variable(4) ret = mu.T*w risk = cvxpy.quad_form(w, Sigma) prob = cvxpy.Problem(cvxpy.Maximize(ret-gamma*risk), [cvxpy.sum_entries(w[1:]) - 0.1*w[0] == 1, w[1:] >= 0, w[0] <= 0]) gamma_x = np.linspace(0, 20, 500) W = np.empty((4, gamma_x.size)) for i, val in enumerate(gamma_x): gamma.value = val prob.solve() W[:,i] = np.asarray(w.value).squeeze() fund_return = mu@W fund_vol= np.array([math.sqrt(W[:,i]@Sigma@W[:,i]) for i in range(gamma_x.size)]) return (W, fund_return, fund_vol) def plot_allocation(W, fund_return, fund_vol): gamma_x = np.linspace(0, 20, fund_return.size) fig, ax1 = plt.subplots() ax1.stackplot(fund_vol, W[1:,], labels=['CLO', 'CSO', 'Subprime']) ax1.set_xlabel('risk factor') ax1.set_ylabel('portfolio weights') ax1.legend() # ax1.text(0.3, 0.82, 'RMBS') # ax1.text(0.5, 0.45, 'CSO') # ax1.text(0.5, 0.15, 'CLO') ax1.set_ylim([0, 1]) ax2 = ax1.twinx() ax2.plot(fund_vol, fund_return, lw=1, color="grey") ax2.set_ylabel('fund volatility') plt.show() if __name__=="__main__": volHY = 0.07 rho = {'CLO': 0.6, 'CSO': 0.5, 'Subprime': 0.3} delta = {'CLO': 0.4, 'CSO': 0.2, 'Subprime': 0.6} mu = np.array([0.01, 0.075, 0.065, 0.25]) W, fund_return, fund_vol = compute_allocation(rho['CLO'], rho['CSO'], rho['Subprime'], delta['CLO'], delta['CSO'], delta['Subprime'], mu[0], mu[1], mu[2], mu[3]) plot_allocation(W, fund_return, fund_vol)