import cvxpy import numpy as np import math def cor2cov(Rho, vol): return np.diag(vol) @ Rho @ np.diag(vol) def rho(sigma, delta, volF): """ computes the correlation between the asset and the factor """ return 1/math.sqrt(1+sigma**2/(delta**2*volF**2)) def resid_vol(rho, delta, volF): """ computes the residual of the asset """ return math.sqrt(delta**2*volF**2*(1/rho**2-1)) def var(rho, delta, volF): """ computes the variance of the asset """ return delta**2*volF**2+resid_vol(rho, delta, volF)**2 volHY = 0.4 rho = {'CLO': 0.9, 'CSO': 0.6, 'Subprime': 0.4} delta = {'CLO': 1.5, 'CSO': 0.4, 'Subprime': 1} u = volHY * np.array([delta['CLO'], delta['CSO'], delta['Subprime']]) Sigma = np.outer(u, u) + np.diag([resid_vol(rho[a], delta[a], volHY)**2 for a in ['CLO', 'CSO', 'Subprime']]) v = volHY**2 * np.array([1, delta['CLO'], delta['CSO'], delta['Subprime']]) Sigma = np.vstack((v, np.c_[v[1:], Sigma])) mu = np.array([0.03, 0.07, 0.04, 0.15]) sharpe = mu/np.sqrt(np.diag(Sigma)) gamma = cvxpy.Parameter(sign='positive') w = cvxpy.Variable(4) ret = mu.T*w risk = cvxpy.quad_form(w, Sigma) prob = cvxpy.Problem(cvxpy.Maximize(ret-gamma*risk), [cvxpy.sum_entries(w[1:]) - 0.1*w[0] == 1, w[1:] >= 0, w[0] <= 0]) W = np.empty((4, 100)) gamma_x = np.linspace(0, 1, 100) for i, val in enumerate(gamma_x): gamma.value = val prob.solve() W[:,i] = np.asarray(w.value).squeeze() fund_return = mu@X fund_vol= np.array([math.sqrt(X[:,i]@Sigma@X[:,i]) for i in range(100)]) from matplotlib import pyplot as plt plt.style.use('ggplot') fig, ax1 = plt.subplots() ax1.stackplot(gamma_x, W[1:,]) ax1.set_xlabel('risk factor') ax1.set_ylabel('portfolio weights') ax1.text(0.3, 0.82, 'RMBS') ax1.text(0.5, 0.45, 'CSO') ax1.text(0.5, 0.15, 'CLO') ax2 = ax1.twinx() ax2.plot(gamma_x, fund_vol, lw=1) ax2.set_ylabel('fund volatility') plt.show()